

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 11

Multiplication of Whole Numbers

Module 11: Multiplication of Whole Numbers Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
algorithm	A procedure or description of steps that can be used to solve a problem.
area	The number of square units that covers a closed figure.
array	A set of objects, pictures, or numbers arranged in columns and rows.
commutative property of multiplication	Two factors can be multiplied in any order.
computation	The action used to solve a problem.
equal groups	Groups with the same number of objects or items in each group.
equal sign	The symbol that tells you that two sides of an equation are the same, balanced, or equal.
factor	A number that you multiply with another number to get the product.
hundreds column	The column with digits in the hundreds place.
multiply/multiplication	The process of adding a number to itself a number of times.
multiplication sign	The symbol that tells you to multiply.
ones column	The column with digits in the ones place.
partial products	The product of parts of each factor.
product	The result of multiplying two or more factors.
regroup/trade/exchange	The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.
tens column	The column with digits in the tens place.

B. Background Information

Background Information:

If your focus is on the conceptual understanding of multiplication, see Module 10: Concepts of Multiplication. This module, Module 11, focuses on computation with multiplication of whole numbers. As you focus on computation, continue to emphasize multiplication as equal groups and multiplication as comparison because students will see these concepts within word problems.

For learning computation with multiplication, we recommend presenting problems vertically. Some students may require explicit instruction on translating a horizontal problem (e.g., 12×27) to the vertical presentation (see below). Depending upon the algorithm, leave enough space above or below the problem for students to complete their written work.

Every student should develop efficiency with a multiplication computation strategy. In the following sections, we provide examples of (1) multiplication with traditional algorithm, (2) multiplication with partial products algorithm, and (3) multiplication with array (or area model). Teachers should help students develop competency with at least one algorithm.

Computation with Multiplication

14	factor
$\times \quad 32$	factor
448	product

C. Routines and Examples

(1) Multiplication with Traditional Algorithm

Routine

Materials:

- Module 11 Problem Sets
- Module 11 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like Base-10 blocks or unifix cubes
- Note that drawings can be used alongside or instead of manipulatives

2-DIGIT × 1-DIGIT: ROUTINE WITH MANIPULATIVES
 (Only use manipulatives with simpler problems)

Teacher Let's work on multiplication. What does it mean to multiply?
Students To make equal groups or to compare.
Teacher Multiplication means to make equal groups or to compare. Look at this problem.
(Show problem.)
Teacher First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students To multiply.
Teacher Let's do this problem with Base-10 blocks.
(Move Base-10 blocks to workspace.)
$\left.\begin{array}{ll}\text { Teacher } & \begin{array}{l}\text { With our Base-10 blocks, each cube represents one thousand. What do the } \\ \text { cubes represent? }\end{array} \\ \text { Students } \\ \text { Thousands. }\end{array}\right]$

Teacher	Now, let's combine the tens. (Put together tens.)
Teacher	If we have more than 9 tens we have to regroup. Do we have more than 9 tens?
Students	OPTION 1: No. We don't have to regroup.
	OPTION 2: Yes. We have to regroup.
Teacher	OPTION 2: How do we group?
Students	Regroup/trade/exchange 10 tens for 1 hundred.
Teacher	Let's exchange 10 tens for 1 hundred. We'll leave the remaining tens and place the 1 hundred with the hundreds. (Regroup.)
Teacher	Now, let's combine the hundreds. (Put together hundreds.)
Teacher	If we have more than 9 hundreds we have to regroup. Do we have more than 9 hundreds?
Students	OPTION 1: No. We don't have to regroup.
	OPTION 2: Yes. We have to regroup.
Teacher	OPTION 2: How do we group?
Students	Regroup/trade/exchange 10 hundreds for 1 thousand.
Teacher	Let's exchange $\mathbf{1 0}$ hundreds for $\mathbf{1}$ thousand. We'll leave the remaining hundreds and place the 1 thousand with the thousands. (Regroup.)
Teacher	Let's count to determine the product. (Count the thousands, hundreds, tens, and ones.)
Teacher	That means __times _ equals __. Let's say that together.
Students	_ times __ equals _
Teacher	Let's say it together again.
Students	__ times __ equals
Teacher	So, if you have \qquad groups of \qquad and multiply by \qquad , the product is \qquad times __equals \qquad Let's review. What's a factor?
Students	The numbers multiplied in a multiplication problem.
Teacher	What's a product?
Students	The result of multiplying factors.
Teacher	What does it mean to make equal groups?
Students	To have groups with an equal number in each group.
Teacher	How could you explain multiplying to a friend?
Students	We used Base-10 blocks to make groups with the same number in each group. The product was the total number of blocks.

2-DIGIT $\times 2$-DIGIT: ROUTINE WITHOUT MANIPULATIVES

Teacher Let's work on multiplication. What does it mean to multiply?

Students	To make equal groups or to compare.
Teacher	Multiplication means to make equal groups or to compare. Look at this problem. (Show problem.)
Teacher	First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students	To multiply.
Teacher	Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the ones from the tens. Let's draw a vertical line between the ones column and the tens column. (Draw vertical lines to separate place value columns.)
Teacher	Now, we start by multiplying the ones of the second factor. This means we'll write these products starting in the ones column below the equal line. Where will we write the products?
Students	Below the equal line.
Teacher	We first multiply the ones of the second factor times the ones of the first factor. What should we multiply first?
Students	The ones of the second factor times the ones of the first factor.
Teacher	Which ones do we multiply?
Students	_ times __.
Teacher	What's \qquad times \qquad ? (If a student has difficulty with multiplication, use a multiplication table or other resource.)
Students	
Teacher	\qquad times \qquad equals \qquad . Let's write \qquad below the equal line in the ones column. IF REGROUPING: Our product is greater than 9 , so we have to regroup. That means we write the ones in the ones place and regroup the tens.
	(Write product.)
Teacher	Now, we multiply the ones of the second factor times the tens of the first factor. What do we multiply?
Students	The ones of the second factor times the tens of the first factor.
Teacher	So, what do we multiply?
Students	__ times _ .
Teacher	What's __ times __?
Students	
Teacher	IF REGROUPING: Remember, we regrouped \qquad from when we multiplied the ones of the second factor by the ones of the first factor. Now, we add that regrouped amount to our product of \qquad times \qquad . So, what's \qquad plus ? \qquad
Students	
Teacher	Let's write \qquad below the equal line in the tens column. (Write product.)

\(\left.$$
\begin{array}{ll}\text { Teacher } & \begin{array}{l}\text { So, we multiplied the ones of the second factor times the ones of the first } \\
\text { factor then the ones of the second factor times the tens of the first factor. } \\
\text { Who can describe what we multiplied so far? }\end{array}
$$

We multiplied the ones of the second factor times the ones of the first factor

then times the tens of the first factor.\end{array}\right]\)| We've multiplied the ones of the second factor. Now, it's time to multiply the |
| :--- |
| tens of the second factor. What will we multiply now? |

Teacher	So, we multiplied the tens of the second factor times the ones of the first factor and then the tens of the second factor times the tens of the first factor. Who can describe what we multiplied?
Students	We multiplied the tens of the second factor times the ones of the first factor then times the tens of the first factor.
Teacher	
Now, we did all the multiplication but we are not finished! We call these	
numbers here (point to numbers under equal line) our partial products. We	
have to add the partial products together to determine the final product.	
Let's draw another equal line and write in a plus sign. What should we draw?	

Example

2-DIGIT $\times 2$-DIGIT: EXAMPLE WITHOUT MANIPULATIVES

[^0]| Teacher | Multiplication means to make equal groups or to compare. Look at this
 problem.
 (Show problem.) |
| :--- | :--- |
| Teacher | First, I see a multiplication sign (point). The multiplication sign tells us to
 multiply. What does the multiplication sign mean? |

Teacher	But we do have to remember to add the regrouped amount to our product. That means we'll add 5 plus 1. What's 5 plus 1?
Students	6.
Teacher	Let's write 6 below the equal line in the tens column. (Write product.)
Teacher	So, we multiplied the ones of the second factor times the ones then the tens. Who can describe what we multiplied so far?
Students	We multiplied 5 times 3 . Then we multiplied 5 times 1.
Teacher	We've multiplied the ones of the second factor. Now, it's time to multiply the tens of the second factor. What will we multiply now?
Students	The tens of the second factor.
Teacher	When writing the products of multiplying the tens of the second factor, we'll write them below this first line of products. Because we're now multiplying by ten, we will write our products starting in the tens column. I like to place an X or zero in the ones column below the equal line to remember to start writing my products in the tens column. (Write X or 0.)
Teacher	Now, let's multiply the tens of the second factor times the ones of the first factor. What should we multiply?
Students	The tens of the second factor times the ones of the first factor.
Teacher	What are the tens of the second factor?
Students	4.
Teacher	What are the ones of the first factor?
Students	3.
Teacher	So, we'll multiply 4 times 3 . What do we multiply?
Students	4 times 3.
Teacher	What's 4 times 3 ? (If a student has difficulty with multiplication, use a multiplication table or other resource.)
Students	12.
Teacher	4 times 3 equals 12.12 is greater than 9 , so we have to regroup. That means we write the 2 of 12 in the tens place below the equal line. We write the 1 of 12 above the hundreds column. (Write product.)
Teacher	Now, we multiply the tens of the second factor times the tens of the first factor. What do we multiply?
Students	The tens of the second factor times the tens of the first factor.
Teacher	So, what do we multiply?
Students	4 times 1.
Teacher	What's 4 times 1 ?
Students	4.
Teacher	Is the product greater than 9 ?
Students	No.
Teacher	Do we have to regroup?

Students	No.
Teacher	But we do have to remember to add the regrouped amount to our product. That means we'll add 4 plus 1. What's 4 plus 1?
Students	5.
Teacher	Let's write 5 below the equal line in the tens column. (Write product.)
Students	
Teacher	Let's write \qquad below the equal line. (Write product.)
Teacher	So, we multiplied the tens of the second factor times the ones of the first factor then the tens of the first factor. Who can describe what we multiplied?
Students	We multiplied 4 times 3 then 4 times 1.
Teacher	We did the multiplication. Are we finished?
Students	No!
Teacher	We are not finished! We call these numbers here (point to numbers under equal line) our partial products. We have to add the partial products together to determine the final product. Let's draw another equal line and write in a plus sign. What should we draw?
Students	An equal line and plus sign. (Write equal line and plus sign.)
Teacher	So, let's add 65 plus 520. What's 65 plus 520? (If students need help with addition of whole numbers, see Module 5.)
Students	585.
Teacher	Yes. So, I write 585 under the equal line. (Write final product.)
Teacher	That means 13 times 45 equals 585. Let's say that together.
Students	13 times 45 equals 585.
Teacher	Let's say it together again.
Students	13 times 45 equals 585.
Teacher	So, if you have 13 and multiply by 45 , the product is 585 . Let's review. What's a factor?
Students	One of the numbers multiplied in a multiplication problem.
Teacher	What's a product?
Students	The result of multiplying factors.
Teacher	What does it mean to make equal groups?
Students	To have groups with an equal number in each group.
Teacher	How could you explain multiplication of double-digit numbers to a friend?
Students	We multiplied the ones of the second factor first. That meant we multiplied 5 times 3 then 5 times 1. Then, we multiplied the tens of the second factor. We multiplied 4 times 3 then 4 times 1 . Finally, we added the partial products of 65 and 520 to determine the product of 585 .

(2) Multiplication with Partial Products Algorithm*

*For clarity, read Example before using Routines.

Routine

Materials:

- Module 11 Problem Sets
- Module 11 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like Base-10 blocks or unifix cubes
- Note that drawings can be used alongside or instead of manipulatives

2-DIGIT × 1-DIGIT: ROUTINE WITH MANIPULATIVES (Only use manipulatives with simpler problems)

Teacher Let's work on multiplication. What does it mean to multiply?
Students To make equal groups or to compare.
Teacher Multiplication means to make equal groups or to compare. Look at this problem. (Show problem.)
Teacher First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students To multiply.
Teacher Let's do this problem with Base-10 blocks.
(Move Base-10 blocks to workspace.)
Teacher With our Base-10 blocks, the flats represent hundreds. What do the flats represent?
Students Hundreds.
Teacher The rods represent tens. What do the rods represent?
Students Tens.
Teacher With our Base-10 blocks, the units represent ones. What do the units represent?
Students Ones.
Teacher Our first factor is __. What's our first factor?
Students .
Teacher Our second factor is . What's our second factor?
Students _.
Teacher Let's solve this problem using multiplication as equal groups. What does equal groups mean?
Students We have groups with an equal number in each group.
Teacher We will use the partial products strategy to solve this problem. Say partial products.
Students Partial products.

Teacher	With the partial products strategy, we do the multiplication for each factor then we add the partial products together for a final product. With the partial products strategy, we work from the greatest place value to the least place value. How do we work?
Students	From the greatest place value to the least place value.
Teacher	In this problem, what is the greatest place value?
Students	Tens.
Teacher	The tens are the greatest place value, so we'll start by multiplying the ones of the second factor by the tens of the first factor. Where do we start?
Students	By multiplying the ones of the second factor times the tens of the first factor.
Teacher	First, let's multiply the ones of the second factor times the tens of the first factor. What are the tens of the first factor?
Students	
Teacher	We have __ tens. __ tens is the same as what?
Students	
Teacher	So, we multiply \qquad times \qquad . Let's use the Base-10 blocks to make \qquad groups of __. l'll make one group at a time. (Use Base-10 blocks to show groups with an equal number in each group.)
Teacher	These Base- 10 blocks are one of our partial products. Now, let's multiply the ones of the second factor times the ones of the first factor. What are the ones of the second factor?
Students	
Teacher	Let's then multiply \qquad times \qquad . Let's use the Base-10 blocks to make _ groups of \qquad . I'll make one group at a time. (Use Base-10 blocks to show groups with an equal number in each group.)
Teacher	This group of Base-10 blocks is another partial product. Now, let's add all the partial products, or Base-10 blocks, to determine the final product. (Count the hundreds, tens, and ones.)
Teacher	That means _ times _ equals _ . Let's say that together.
Students	__times __ equals __.
Teacher	Let's say it together again.
Students	_ times __ equals _ .
Teacher	So, if you have \qquad groups of \qquad and multiply by \qquad , the product is \qquad times \qquad equals \qquad Let's review. What's a factor?
Students	The numbers multiplied in a multiplication problem.
Teacher	What's a product?
Students	The result of multiplying factors.
Teacher	What does it mean to use the partial products strategy?
Students	We multiplied each factor for a partial product. Then, we added the partial products to determine the final product.
Teacher	How could you explain multiplying to a friend?
Students	We multiplied the ones of the second factor times the tens of the first factor. Then, we multiplied the ones of the second factor times the ones of the first factor. We added the partial products to determine the final product.

2-DIGIT $\times 2$-DIGIT: ROUTINE WITHOUT MANIPULATIVES

Teacher
Students Teacher

Teacher

Students
Teacher

Teacher
Students
Teacher

Students
Teacher

Students
Teacher
Students
Teacher
Students
Teacher
Students

Students
Teacher

Teacher

Students
Teacher
Students

Let's work on multiplication. What does it mean to multiply?
To make equal groups or to compare.
Multiplication means to make equal groups or to compare. Look at this problem.
(Show problem.)
First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
To multiply.
Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the ones from the tens. Let's draw a vertical line between the ones column and the tens column.
(Draw vertical lines to separate place value columns.)
Let's use the partial products strategy. What strategy?
Partial products.
With the partial products strategy, we do the multiplication for each factor then we add the partial products together for a final product. With the partial products strategy, we work from the greatest place value to the least place value. How do we work?
From the greatest place value to the least place value.
First, we'll multiply the tens of the second factor times the tens of the first factor and ones of the first factor. Let's do that now. What are the tens of the second factor?
\qquad
-
We have
\qquad tens in the second factor. \qquad tens is the same as what? __.
Look at the first factor. What are the tens of the first factor?
\qquad
We have _ tens in the first factor. \qquad tens is the same as what?
\qquad
So, let's multiply \qquad times \qquad . What's \qquad times \qquad ?
\qquad
\qquad times __ equals \qquad . Let's write \qquad below the equal line. (Write product.)
__ is our first partial product. Now, let's multiply the tens of the second factor times the ones of the first factor? What do we multiply?
\qquad times \qquad .
\qquad times ?
\qquad _.

Teacher	Let's write \qquad below the equal line. We'll write this second partial product under the first partial product. (Write product.)
Teacher	Now, let's multiply the ones of the second factor times the tens of the first factor and ones of the first factor. Let's do that now. What are the ones of the second factor?
Students	
Teacher	We have \qquad ones in the second factor. Look at the first factor. What are the tens of the first factor?
Students	
Teacher	We have __ tens in the first factor. _ tens is the same as what?
Students	
	So, let's multiply _ times _ . What's _ times _ ?
Students	
Teacher	\qquad times \qquad equals \qquad . Let's write \qquad below the equal line under our other partial products. (Write product.)
Teacher	Finally, let's multiply the ones of the second factor times the ones of the first factor. What do we multiply?
Students	__times __.
Teacher	What's __times __?
Students	
Teacher	Let's write \qquad below the equal line under our other partial products. (Write product.)
Teacher	To determine the final product, we add all the partial products together. I'll write a plus sign and another equal line. (Write plus sign and equal line.)
Teacher	So, what's \qquad plus \qquad plus \qquad plus ? \qquad (For assistance with the partial sums algorithm for addition, see Module 5.)
Students	-
Teacher	__ is our final product. Let's write __ under the equal line.
Students	(Write product.)
Teacher	That means \qquad times \qquad equals \qquad . Let's say that together.
Students	_ times \qquad equals _. \qquad
Teacher	Let's say it together again.
Students	__times __ equals __.
Teacher	So, if you have \qquad groups and multiply by \qquad , the product is \qquad times equals \qquad . Let's review. What's a factor?
Students	The numbers multiplied in a multiplication problem.
Teacher	What's a product?
Students	The result of multiplying factors.
Teacher	What does it mean to use the partial products strategy?
Students	We multiplied each factor for a partial product. That means we multiplied the tens of the second factor times the tens of the first factor then the ones of the

first factor. We also multiplied the ones of the second factor times the tens of the first factor and ones of the first factor. Then, we added the partial products to determine the final product.
Teacher How could you explain multiplying to a friend?
Students We multiplied the tens of the second factor times the tens and ones of the first factor. Then, we multiplied the ones of the second factor times the tens and ones of the first factor. We added the partial products to determine the final product.

2-DIGIT \times 2-DIGIT: EXAMPLE WITHOUT MANIPULATIVES

Teacher	Let's work on multiplication. What does it mean to multiply? Students Teacher
To make equal groups or to compare. Multiplication means to make equal groups or to compare. Look at this problem. (Show problem.)	
Teacher	First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students \quadTo multiply. Let's do this problem with our pencil. First, when I see a problem like this that	
	requires computation, I like to draw vertical lines to separate the ones from the tens. Let's draw a vertical line between the ones column and the tens column.
(Draw vertical lines to separate place value columns.)	
Leat's use the partial products strategy. What strategy?	

Teacher	First, we'll multiply the tens of the second factor times the tens of the first factor and ones of the first factor. Let's do that now. What are the tens of the second factor?
Students	4.
Teacher	We have 4 tens in the second factor. 4 tens is the same as what?
Students	40.
Teacher	Look at the first factor. What are the tens of the first factor?
Students	1.
Teacher	We have 1 ten in the first factor. 1 ten is the same as what?
Students	10.
	So, let's multiply 40 times 10 . What's 40 times 10?
Students	400.
Teacher	40 times 10 equals $\mathbf{4 0 0}$. Let's write 400 below the equal line. (Write product.)
Teacher	400 is our first partial product. Now, let's multiply the tens of the second factor times the ones of the first factor? What do we multiply?
Students	40 times 3.
Teacher	What's 40 times 3?
Students	120.
Teacher	Let's write 120 below the equal line. We'll write this partial product under the first partial product. (Write product.)
Teacher	Now, let's multiply the ones of the second factor times the tens of the first factor and ones of the first factor. Let's do that now. What are the ones of the second factor?
Students	5.
Teacher	We have 5 ones in the second factor. Look at the first factor. What are the tens of the first factor?
Students	1.
Teacher	We have 1 ten in the first factor. 1 ten is the same as what?
Students	10.
	So, let's multiply 5 times $\mathbf{1 0}$. What's 5 times 10 ?
Students	50.
Teacher	5 times $\mathbf{1 0}$ equals $\mathbf{5 0}$. Let's write $\mathbf{5 0}$ below the equal line under our other partial products. (Write product.)
Teacher	Finally, let's multiply the ones of the second factor times the ones of the first factor. What do we multiply?
Students	5 times 3.
Teacher	What's 5 times 3?
Students	15.
Teacher	Let's write 15 below the equal line under our other partial products. (Write product.)

Teacher To determine the final product, we add all the partial products together. I'll write a plus sign and another equal line.
(Write plus sign and equal line.)
Teacher I like to add in steps. What's 400 plus 120?
Students 520.
Teacher What's 520 plus 50?
Students 570.
Teacher What's 570 plus 15?
Students 585.
Teacher $\quad 585$ is our final product. Let's write 585 under the equal line.
Students (Write product.)
Teacher That means 13 times 45 equals 585. Let's say that together.
Students 13 times 45 equals 585.
Teacher Let's say it together again.
Students 13 times 45 equals 585.
Teacher So, if you have 13 and multiply by 45 , the product is 585.13 times 45 equals 585. Let's review. What's a factor?

Students The numbers multiplied in a multiplication problem.
Teacher What's a product?
Students The result of multiplying factors.
Teacher What does it mean to use the partial products strategy?
Students We multiplied each factor for a partial product. Then, we added the partial products to determine the final product.
Teacher How could you explain multiplying to a friend?
Students We multiply 40 times 10 , then 40 times 3 . Then, we multiplied 5 times 10 and 5 times 3. We added the partial products for a final product of 585 .

(3) Multiplication with Array (Area Model)
 *For clarity, read Example before using Routine.

Routine

Materials:

- Module 11 Problem Sets
- Module 11 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

2-DIGIT $\times 2$-DIGIT: ROUTINE WITHOUT MANIPULATIVES

Teacher Let's work on multiplication. What does it mean to multiply?
Students To make equal groups or to compare.
Teacher Multiplication means to make equal groups or to compare. Look at this problem.
(Show problem.)
Teacher First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students To multiply.
Teacher Let's do this problem using the array model. We'll create an array or rectangular area with our multiplication problem. The array model is similar to the partial products model. Let's get started. First, I have to draw rectangular array. What do I have to draw?
Students Rectangular array.
Teacher My array includes the place value of each factor. How many digits in the first factor?
Students \qquad
Teacher
Students
So, that's a \qquad -digit factor. How many digits in the second factor?

Teacher
So, that's a \qquad -digit factor. Our array should have
\qquad columns for the first factor and __ rows for the second factor. Let's draw an array with _ columns and \qquad rows.
(Draw array.)
Teacher Now, I write the first factor in expanded form. What does expanded form mean?
Students To write the number in tens and ones.
Teacher How many tens are in the first factor?
Students —.
Teacher \qquad tens is the same as \qquad . So the expanded form of \qquad would be \qquad plus \qquad . Let's write \qquad and \qquad above the columns.
(Write first factor in expanded form.)
Teacher Now, I write the second factor in expanded form on the right side of the array. What does expanded form mean?

Students
Teacher
Students
Teacher

Teacher

Students Teacher

Teacher

Students
Teacher
Students

To write the number in tens and ones.
How many tens are in the second factor?
\qquad -.
\qquad tens is the same as __. So the expanded form of __ would be \qquad plus \qquad Let's write \qquad and \qquad next to the row on the right side.
(Write second factor in expanded form.)
Now that we have set up the problem, let's multiply. I like to multiply the second factor times the first factor but any order is okay - the commutative property helps us with that! Let's multiply __ (tens on row) times __ (tens on column.) What's __ times __?
\qquad .

__times
\qquad equals \qquad . Let's write \qquad in the part of the array in which the row and column meet.
(Write product.)
__ is a partial product. Now, let's multiply the tens of the second factor times the ones of the first factor. What do we multiply?
\qquad times \qquad _.

What's \qquad times __?
\qquad -.
Let's write \qquad in the part of the array in which the row and column meet.
(Write product.)
Teacher Now, let's multiply the ones of the second factor times the tens of the first factor and ones of the first factor. Let's do that now. What are the ones of the second factor?
Students Teacher

Students
Teacher
Students

Students
Teacher

Teacher

Students
Teacher
Students
Teacher

Teacher
\qquad
We have __ ones in the second factor. Look at the first factor. What are the tens of the first factor?
-.
We have __tens in the first factor. __ tens is the same as what?
\qquad -.
So, let's multiply __times _
\qquad . What's \qquad times \qquad ?
\qquad _.
\square times
\qquad equals
\qquad . Let's write \qquad in the part of the array in which the row and column meet.
(Write product.)
Finally, let's multiply the ones of the second factor times the ones of the first factor. What do we multiply?
\qquad times \qquad
What's __ times __?
\qquad _.
Let's write \qquad in the part of the array in which the row and column meet.
(Write product.)
To determine the final product, we add all the partial products together. I'll write all the partial products from greatest to least.
(Rewrite partial products.)
Teacher So, what's __ plus __ plus __ plus __?
(For assistance with the partial sums algorithm for addition, see Module 5.)
Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher
dents
Teacher
Students
Teacher
Students
\qquad .
\qquad is our final product. Let's write _ under the equal line. (Write product.)
That means __ times _ equals __. Let's say that together.
\qquad times \qquad equals \qquad .
Let's say it together again.
\qquad
\qquad _.
So, if you have __ groups and multiply by __, the product is \qquad . times \qquad equals __. Let's review. What's a factor?
The numbers multiplied in a multiplication problem.
What's a product?
The result of multiplying factors.
What does it mean to use an array?
We determined the expanded form for each factor. Then, we multiplied each factor for a partial product. Finally, we added the partial products to determine the final product.

Example

$\begin{array}{r}13 \\ \times \quad 45 \\ \hline\end{array}$	10	3		400
	400	120	40	120
	50	15	5	+ 15
				585

Teacher	Let's work on multiplication. What does it mean to multiply? Students To make equal groups or to compare.
Teacher	Multiplication means to make equal groups or to compare. Look at this problem. (Show problem.)
Teacher	First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students	To multiply.
Teacher	Let's do this problem using the array model. We'll create an array or rectangular area with our multiplication problem. The array model is similar to the partial products model. Let's get started. First, I have to draw rectangular array. What do I have to draw?

Students	Rectangular array.
Teacher	My array includes the place value of each factor. How many digits in the first factor?
Students	2.
Teacher	So, that's a 2-digit factor. How many digits in the second factor?
Students	2.
Teacher	So, that's a 2-digit factor. Our array should have $\mathbf{2}$ columns for the first factor and 2 rows for the second factor. Let's draw an array with $\mathbf{2}$ columns and 2 rows. (Draw array.)
Teacher	Now, I write the first factor in expanded form. What does expanded form mean?
Students	To write the number in tens and ones.
Teacher	How many tens are in the first factor?
Students	1.
Teacher	1 ten is the same as 10 . So, the expanded form of 13 would be 10 plus 3 . Let's write 10 and 3 above the columns. (Write first factor in expanded form.)
Teacher	Now, I write the second factor in expanded form on the right side of the array. What does expanded form mean?
Students	To write the number in tens and ones.
Teacher	How many tens are in the second factor?
Students	4.
Teacher	4 tens is the same as 40 . So, the expanded form of 45 would be 40 plus 5. Let's write 40 and 5 next to the row on the right side. (Write second factor in expanded form.)
Teacher	Now that we have set up the problem, let's multiply. I like to multiply the second factor times the first factor but any order is okay - the commutative property helps us with this! Let's multiply 40 times 10 . What's 40 times 10 ?
Students	400.
Teacher	40 times 10 equals 400 . Let's write 400 in the part of the array in which the row and column meet. (Write product.)
Teacher	400 is a partial product. Now, let's multiply the tens of the second factor times the ones of the first factor. What do we multiply?
Students	40 times 3.
Teacher	What's 40 times 3?
Students	120.
Teacher	Let's write 120 in the part of the array in which the row and column meet. (Write product.)
Teacher	Now, let's multiply the ones of the second factor times the tens of the first factor and ones of the first factor. Let's do that now. What are the ones of the second factor?
Students	5.

Teacher	We have 5 ones in the second factor. Look at the first factor. What are the tens of the first factor?
Students	1.
Teacher	We have 1 ten in the first factor. 1 ten is the same as what?
Students	10.
	So, let's multiply 5 times 10 . What's 5 times 10?
Students	50.
Teacher	5 times 10 equals 50 . Let's write 50 in the part of the array in which the row and column meet. (Write product.)
Teacher	Finally, let's multiply the ones of the second factor times the ones of the first factor. What do we multiply?
Students	5 times 3.
Teacher	What's 5 times 3?
Students	15.
Teacher	Let's write 15 in the part of the array in which the row and column meet. (Write product.)
Teacher	To determine the final product, we add all the partial products together. I'll write all the partial products from greatest to least. (Rewrite to $400+120+50+15$.)
Teacher	Let's add this in steps. What's 400 plus 120?
Students	520.
Teacher	What's 520 plus 50?
Students	570.
Teacher	What's 570 plus 15?
Students	585.
Teacher	585 is our final product. Let's write 585 under the equal line.
Students	(Write product.)
Teacher	That means 13 times 45 equals 585. Let's say that together.
Students	13 times 45 equals 585.
Teacher	Let's say it together again.
Students	13 times 45 equals 585.
Teacher	So, if you have 13 and multiply by 45 , the product is 585.13 times 45 equals 585. Let's review. What's a factor?
Students	The numbers multiplied in a multiplication problem.
Teacher	What's a product?
Students	The result of multiplying factors.
Teacher	What does it mean to use an array?
Students	We determined the expanded form for each factor. Then, we multiplied each factor for a partial product. Finally, we added the partial products to determine the final product.

D. Problems for Use During Instruction

See Module 11 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 11 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 11: Multiplication of Whole Numbers

Problem Sets

A. Two-digit numbers by one-digit numbers (30)
B. Two-digit numbers by two-digit numbers (30)
C. Three-digit numbers by two-digit numbers (20)

$$
\begin{array}{r}
49 \\
\times \quad 3 \\
\hline
\end{array}
$$

A.

$$
\begin{array}{r}
25 \\
\times \quad 2 \\
\hline
\end{array}
$$

A.

A.

A.

$$
\begin{array}{r}
69 \\
\times \quad 3 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
42 \\
\times \quad 5 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
84 \\
\times \quad 2 \\
\hline
\end{array}
$$

A.

$$
\begin{array}{r}
56 \\
\times \quad 3 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
92 \\
\times \quad 6 \\
\hline
\end{array}
$$

A.

$$
\begin{array}{r}
72 \\
\times \quad 8 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
67 \\
\times \quad 9 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
33 \\
\times \quad 7 \\
\hline
\end{array}
$$

A.

$$
\begin{array}{r}
56 \\
\times \quad 6 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
30 \\
\times \quad 2 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
86 \\
\times \quad 5 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
34 \\
\times \quad 7 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
60 \\
\times \quad 5 \\
\hline
\end{array}
$$

A.

$$
\begin{array}{r}
90 \\
\times \quad 8 \\
\hline
\end{array}
$$

A.

$$
\begin{array}{r}
21 \\
\times \quad 9 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
10 \\
\times \quad 3 \\
\hline
\end{array}
$$

A.

$$
\begin{array}{r}
27 \\
\times \quad 3 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
42 \\
\times \quad 8 \\
\hline
\end{array}
$$

B.

B.

B.

B.

$$
\begin{array}{r}
46 \\
\times 16 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
61 \\
\times 10 \\
\hline
\end{array}
$$

B.

B.

$$
\begin{array}{r}
97 \\
\times 42 \\
\hline
\end{array}
$$

B.

B.

B.

B.

B.

B.

$$
\begin{array}{r}
81 \\
\times 30 \\
\hline
\end{array}
$$

B.

$$
\begin{array}{r}
22 \\
\times 88 \\
\hline
\end{array}
$$

B.

C.

Module 11: Multiplication of Whole Numbers

Vocabulary Cards

algorithm
area
array
computation
commutative property equal groups equal sign
factor
hundreds column
multiply/multiplication
multiplication sign
ones column
partial products
product
regroup/trade/exchange tens column

algorithm

A procedure or description of steps that can be used to solve a problem.

area

The number of square units that covers a closed figure.

array

A set of objects, pictures, 1
ed in columns and rows.

computation

The action used to solve a problem.

commutative property (of multiplication)

Two factors can be multiplied in any order.

$$
2 \times 8=8 \times 2
$$

equal groups

Groups with the same number of objects or items in each group.

equal sign

The symbol that tells you that two sides of an equation are the same, balanced, or equal.
$\quad 2 \times 8=16$
$=$ is the equal sign

factor

A number you multiply with another number to get the product.
$2 \times 8=16$
2 and 8 are the factors

hundreds column

The column with digits in the hundreds place.
In the number 423, 4 is in the hundreds place.

multiply/multiplication

The process of adding a number to itself a number of times.

$$
4 \times 2=8
$$

multiplication sign

The symbol that tells you to multiply.

$2 \times 8=16$ x is the multiplication sign

ones column

The column with digits in the ones place.
In the number 423, 3 is in the ones place.

partial products

The product of parts of each factor.
13

$$
\begin{array}{r}
\times 45 \\
\hline 400(40 \times 10) \\
\mathbf{1 2 0}(40 \times 3) \\
\mathbf{5 0}(10 \times 5) \\
+\quad \mathbf{1 5}(5 \times 3) \\
\hline \mathbf{5 8 5}
\end{array}
$$

product

The result of multiplying two or more factors.

$$
\begin{gathered}
\mathbf{2 \times 8}=16 \\
16 \text { is the product }
\end{gathered}
$$

regroup/trade/exchange

The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.

tens column

The column with digits in the tens place.
In the number 423, 2 is the in the tens column.

[^0]: Teacher
 Students

 To make equal groups or to compare.

