

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 14

Division of Whole Numbers

Module 14: Division of Whole Numbers Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
algorithm	A procedure or description of steps that can be used to solve a problem.
computation	The action used to solve a problem.
divide/division	To separate into equal groups.
dividend	The number that is to be divided in a division problem.
division sign	The symbol that tells you to divide.
divisor	The number that the dividend is divided by.
equal groups	Groups with the same number of objects or items in each group.
equal sign	The symbol that tells you that two sides of an equation are the same, balanced, or equal.
hundreds column	The column with digits in the hundreds place.
ones column	The column with digits in the ones place.
quotient	The number that results when one number is divided by another number.
regroup/trade/exchange	The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.
remainder	The amount left over in a division problem.
tens column	The column with digits in the tens place.

B. Background Information

Background Information:

If your focus is on the conceptual understanding of division, see Module 13: Concepts of Division. This module, Module 14, focuses on computation with division of whole numbers. As you focus on computation, continue to emphasize division as partitive (i.e., equal shares) and division as quotative (i.e., measurement) because students will see these concepts within word problems.

For learning computation with division, we recommend presenting problems with a division bracket. Some students may require explicit instruction on translating a horizontal problem (e.g., $245 \div 15$) to the presentation with a division bracket (see below). Depending upon the algorithm, leave enough space above or below the problem for students to complete their written work.

Every student should develop efficiency with a division computation strategy. In the following sections, we provide examples of (1) division with traditional algorithm and (2) division with partial quotients algorithm. Teachers should help students develop competency with at least one algorithm.

C. Routines and Examples

(1) Division with Traditional Algorithm

Routine

Materials:

- Module 14 Problem Sets
- Module 14 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like Base-10 blocks or unifix cubes
- Note that drawings can be used alongside or instead of manipulatives

2-DIGIT \div 1-DIGIT: ROUTINE WITH MANIPULATIVES
 (Only use manipulatives with simpler problems)

Teacher	Let's work on division. What does it mean to divide? Students Te share equally or measure into groups.
Teacher	Division means to share equally or to measure into groups. Look at this problem. (Show problem.)
Teacher	First, I see a division bracket (point). The division bracket tells us to divide. What does the division bracket mean?
Students	To divide.
Teacher	Let's do this problem with Base-10 blocks. (Move Base-10 blocks to workspace.)
Teacher	With our Base-10 blocks, each cube represents one thousand. What do the cubes represent?
Students	Thousands.

Teacher	The flats represent hundreds. What do the flats represent?
Students	Hundreds.
Teacher	The rods represent tens. What do the rods represent?
Students	Tens.
Teacher	With our Base-10 blocks, the units represent ones. What do the units represent?
Students	Ones.
Teacher	Our dividend is __. What's our dividend?
Students	
Teacher	Let's show this dividend by showing \qquad with the Base-10 blocks. (Use Base-10 blocks to show dividend.)
Teacher	How many blocks?
Students	
Teacher	Our divisor is __. What's our divisor?
Students	
Teacher	Let's solve this problem using division as partitive or equal shares. What does equal shares mean?
Students	We divide the blocks equally among groups.
Teacher	If we want to equally share the blocks, our divisor tells us the number of groups. What's the divisor tell us?
Students	The number of groups.
Teacher	Let's show the groups by showing _ plates. (Show plates.)
Teacher	Now, let's use the Base-10 blocks and divide the blocks equally among the \qquad groups. Let's start dividing with the greatest place value. In this example, that means I'll divide the tens then I'll divide the ones. How will we divide?
Students	Tens then ones.
Teacher	So, let's equally share the tens among the groups. I place 1 ten on each plate until I either have no remaining tens or I don't have enough tens to share equally. (Equally share the tens blocks on each plate.)
Teacher	Do we have any remaining tens?
Students	OPTION 1: No.
	OPTION 2: Yes.
Teacher	OPTION 2: We have tens remaining that cannot be equally shared unless we regroup the tens into ones. Let's regroup the tens into ones. (Regroup remaining tens into ones.)
Teacher	So, how many ones do we have to equally share?
Students	
Teacher	Let's equally share the ones among the groups. I place 1 one on each plate until I have no remaining ones. (Equally share the ones blocks on each plate.)
Teacher	Now, to learn the quotient, let's count the number of blocks in one group. We have \qquad , ...

(Count blocks on 1 plate.)
Teacher How many blocks in one group?

Students
Teacher
Students
Teacher
Students
\qquad
Yes! There are __ blocks. So, __ divided by __ equals __. Let's say that together.
\qquad divided by __ equals __
\qquad
Let's say it together again.
\qquad divided by equals \qquad
So, if you have \qquad blocks and share the blocks equally among __ groups, the quotient is __ _ divided by __ equals __. Let's review. What's a dividend?
Students The total number that will be divided.
Teacher
What's a divisor?
Students The number of groups we will make to then equally share objects.
Teacher What's a quotient?
Students The result in each group after you equally share.
Teacher What does it mean to partition?
Students To equally share objects among groups.
Teacher How could you explain dividing to a friend?
Students We started with a total number of blocks. We equally shared the blocks among groups. The quotient was the number of blocks in each group.

3-DIGIT : 2-DIGIT: ROUTINE WITHOUT MANIPULATIVES

Teacher Let's work on division. What does it mean to divide?
Students To share equally or measure into groups.
Teacher Division means to share equally or to measure into groups. Look at this problem.
(Show problem.)
Teacher First, I see a division bracket (point). The division bracket tells us to divide. What does the division bracket mean?
Students To divide.
Teacher Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the hundreds from the tens and the tens from the ones. Let's draw a vertical line between each of the columns in the dividend.
(Draw vertical lines to separate place value columns.)
Teacher When we divide using this method, for each place value in the dividend, the first thing we do is divide. If we can divide, then we multiply, subtract, and then bring in the next place value. So, the pattern is: divide, multiply, subtract, bring in. Say that with me.
Students
Divide, multiply, subtract, bring in.
Teacher And we keep repeating that pattern until we have solved the problem. Let's see how it works. Are you ready?

Students
Yes!
Teacher
Students
Teacher
Students Teacher

Students Teacher

Students

Teacher

Teacher

Students Teacher

Teacher
Students
Teacher

Students
Teacher
Students
Teacher

Teacher

Students

Teacher

Teacher Students Teacher
\qquad
\qquad

Now, we start by dividing the dividend by the divisor. What's our dividend?

And we'll divide the dividend by the divisor. What's the divisor?
Okay, how many groups of __ (divisor) can we make if we have _ (digit in hundreds column of dividend)?
We can't make any groups of \qquad .
We can't make a group of __. So, now I think how many groups of __ (divisor)
can we make if we have __ (digits in the hundreds and tens columns of dividend)?
OPTION 1: _ groups.
OPTION 2: We can't make any groups of \qquad _.

OPTION 1: We can make __ groups. So, let's write __ above the division bracket in the tens column.
(Write.)
So, __ (divisor) times __ (digit above tens column) equals \qquad . What's _ (divisor) times _ (digit above tens column)? —.
Let's write that product below the \qquad (digits in the hundreds and tens columns of dividend).

> (Write.)

Now, let's write a minus sign and an equal line. What sign?
Minus sign.
And let's subtract __ (digits in the hundreds and tens column of dividend) minus _ (product). What do we subtract?
\qquad
What's _
\qquad minus \qquad ?
\qquad
Let's write the difference here under the equal line. (Write.)
Now, we bring in the one to our difference. (difference) becomes __. This is our new dividend. What's our new dividend?
-.
(Draw arrow and write.)
OPTION 2: We can't make any groups of _. So, now I think about how many groups of __ (divisor) can we make if we have __ (digits in the hundreds, tens, and ones columns of dividend)?
How many groups of __ (divisor) can we make with our new dividend? __ groups.
We can make _ groups. So, let's write __ above the division bracket in the ones column.
(Write.)

Teacher So, __ (divisor) times __ (digit above ones column) equals __. What's __ (divisor) times _ (digit above ones column)?
Students \qquad _-
Let's write that product below the \qquad (digits in the new dividend).
(Write.)
Teacher Now, let's write a minus sign and an equal line. What sign?
Students
Minus sign.
Teacher

Students
Teacher
Students
Teacher

Teacher
And let's subtract \qquad (digits in the new dividend) minus \qquad (product). What do we subtract?
\qquad minus \qquad .
\qquad
\qquad minus \qquad
\qquad
Let's write the difference here under the equal line.
(Write.)
Now, do we have any remaining?
OPTION 1: No.
OPTION 2: Yes.

Teacher

Students
Teacher

Teacher
Students
Teacher

Students
Teacher

Teacher
Teacher

Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher

Teacher OPTION 1: We have nothing remaining in our difference. It's time to determine the quotient.
OPTION 2: We have some remaining in our difference. This will be our remainder. Say that with me. Remainder. I'll show the remainder like this. First, up by the quotient, I'll write a letter R for remainder.
(Write R.)
What does the \mathbf{R} stand for?
Remainder.
Then, I write the remainder amount next to the R. What's the remainder amount?
\qquad
-
Let's write __ next to R.
(Write.)
It's time to determine the quotient.
Our quotient is the number above the division bracket. Where can you find the quotient?
Above the division bracket.
What's the quotient?
-.
So, __ divided by __ equals __. Let's say that together.
\qquad divided by \qquad equals \qquad Let's say it together again.
\qquad divided by \qquad equals \qquad
So, if you have \qquad (dividend) and divide by \qquad (divisor), the quotient is \qquad .

Students The total number that will be divided.
Teacher What's a divisor?
Students The number of groups we will make.
Teacher What's a quotient?
Students The result in each group after you equally share or measure groups.
Teacher How could you explain dividing to a friend?
Students We asked ourselves about how many groups we can make with the divisor from the dividend. The number of groups is the quotient.

Example

39

$1 2 \longdiv { 4 6 8 }$

3-DIGIT $\div 2$-DIGIT: EXAMPLE WITHOUT MANIPULATIVES

Teacher	Let's work on division. What doe
Students	To share equally or measure into groups.
Teacher	Division means to share equally or to measure into groups. Look at this problem. (Show problem.)
Teacher	First, I see a division bracket (point). The division bracket tells us to divide. What does the division bracket mean?
Students	To divide.
Teacher	Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the hundreds from the tens and the tens from the ones. Let's draw a vertical line between each of the columns in the dividend. (Draw vertical lines to separate place value columns.)
Teacher	Now, we start by dividing the dividend by the divisor. What's our dividend?
Students	468.
Teacher	And we'll divide the dividend by the divisor. What's the divisor?
Students	12.
Teacher	When we divide using this method, for each place value in the dividend, the first thing we do is divide. If we can divide, then we multiply, subtract, and then bring in the next place value. So, the pattern is: divide, multiply, subtract, bring in. Say that with me.
Students	Divide, multiply, subtract, bring in.
Teacher	And we keep repeating that pattern until we have solved the problem. Let's see how it works. Are you ready?
Students	Yes!
Teacher	Okay, so we start with the greatest place value of the dividend. Where do we start?
Students	Greatest place value of the dividend.
Teacher	In this problem, the greatest place value of the dividend is 4. What number?

Students	4.
Teacher	How many groups of 12 can we make with 4?
Students	We can't make any groups of 4 if we have 12.
Teacher	We can't make a group of 12. So, now we bring in the 6 to make 46 . I think how many groups of 46 can we make if we have 12?
Students	We can make 3 groups of 12 .
	We can make $\mathbf{3}$ groups. So, let's write $\mathbf{3}$ above the division bracket in the tens column. (Write 3.)
Teacher	So, now let's multiply 12 times 3. What's 12 times 3?
Students	36.
Teacher	Let's write that product of $\mathbf{3 6}$ below the 46 in the dividend. (Write 36.)
Teacher	Now, let's write a minus sign and an equal line to help us subtract 36 from 46. What sign?
Students	Minus sign.
Teacher	What do we subtract?
Students	46 minus 36.
Teacher	What's 46 minus 36?
Students	10.
Teacher	Let's write the difference here under the equal line. (Write 10.)
Teacher	Now, we bring in the one to our difference. I like to show this by drawing an arrow from the 8 and rewriting the 8 next to 10. (Draw arrow and write 8.)
Teacher	When I bring in the 8,10 now becomes 108. This is our new dividend. What's our new dividend?
Students	108.
Teacher	So, we followed the steps of division: divide, multiply, subtract, bring in. Say that with me.
Students	Divide, multiply, subtract, bring in.
Teacher	But the problem isn't finished. Let's follow the steps again: divide, multiply, subtract, bring in. What do we do?
Students	Divide, multiply, subtract, bring in.
Teacher	How many groups of 12 can we make with our new dividend of 108?
Students	9 groups.
Teacher	We can make 9 groups. So, let's write 9 above the division bracket in the ones column. (Write 9.)
Teacher	So, let's multiply. What's 12 times 9?
Students	108.
Teacher	Let's write 108 below the 108. (Write 108.)
Teacher	Now, let's write a minus sign and an equal line. What sign?

Students	Minus sign.
Teacher	And let's subtract 108 minus 108. What do we subtract?
Students	108 minus 108.
Teacher	What's 108 minus 108?
Students	0.
Teacher	Let's write the difference here under the equal line. (Write 0.)
Teacher	Now, do we have any remaining?
Students	No.
Teacher	We have nothing remaining in our difference. It's time to determine the quotient. Our quotient is the number above the division bracket. Where can you find the quotient?
Students	Above the division bracket.
Teacher	What's the quotient?
Students	39
Teacher	So, 468 divided by 12 equals 39. Let's say that together.
Students	468 divided by 12 equals 39 .
Teacher	Let's say it together again.
Students	468 divided by 12 equals 39.
Teacher	So, if you have 468 and divide by 12 , the quotient is 39 . Let's review. What's a dividend?
Students	The total number that will be divided.
Teacher	What's a divisor?
Students	The number of groups we will make.
Teacher	What's a quotient?
Students	The result in each group after you equally share or measure groups.
Teacher	How could you explain dividing to a friend?
Students	We asked ourselves about how many groups we can make with the divisor from the dividend. The number of groups is the quotient.

(2) Division with Partial Quotients Algorithm*

*For clarity, read Example before using Routines.

Routine

Materials:

- Module 14 Problem Sets
- Module 14 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

3-DIGIT \div 2-DIGIT: ROUTINE WITHOUT MANIPULATIVES

Teacher	Let's work on division. What does it mean to divide?
Students	To share equally or measure into groups. Teacher Division means to share equally or to measure into groups. Look at this problem.
(Show problem.)	
Teacher	First, I see a division bracket (point). The division bracket tells us to divide. What does the division bracket mean?
Students	To divide.

Teacher Let's do this problem with our pencil, and let's use the partial quotients strategy. If I want to use the partial quotients strategy, I first draw a vertical line down from the end of the division bracket.
(Draw vertical line from end of division bracket.)
Teacher
Students
Teacher
Students
Teacher

Students Now, we start by dividing the dividend by the divisor. What's our dividend?
\qquad _-.
And we'll divide the dividend by the divisor. What's the divisor?
\qquad
I don't know exactly how many groups of __ (divisor) I can make with __ (dividend), so the partial quotients strategy can be used with computation that I do know. Which strategy are we using? Partial quotients.

Teacher

Students
Teacher
Students
Teacher

With the partial quotients strategy, we divide the dividend a few times. Each time we create a partial quotient. At the end, we add the partial quotients to determine the final quotient. Which strategy are we using again? Partial quotients.
How many groups of __ (divisor) can we make with __ (dividend)? I'm not sure.
I don't know the exact answer either, so l'll use a partial quotient to start solving this problem. I know that __ (friendly number) groups of __ (divisor) would be __
\qquad (product of friendly number times divisor), so l'll write \qquad (product) under the __ (original dividend). I'll also write __ (partial quotient) to the right of the vertical line. _ (partial quotient) is one of my partial quotients.
(Write.)
Teacher Now, l'll subtract _ (product) from the dividend of _ to determine a new dividend. I write a minus sign and an equal line.
(Write minus sign and equal line.)

Teacher
Students
Teacher

Teacher
Students

Teacher

Teacher
Students
Teacher
Teacher
Students
Teacher

Teacher

Teacher
Students
Teacher

Teacher Students
Teacher
_ (dividend) minus _ (product) equals what?
\qquad
Let's write the difference of __ below the equal line.
(Write.)
Now, how many groups of __ (divisor) can we make with __ (new dividend)?
I'm not sure.
Again, I don't know the exact answer either, so l'll use a partial quotient. I know that __ (friendly number) groups of __ (divisor) would be __ (product of friendly number times divisor). I'm using computation that's easier for me to do. So, __ (friendly number) groups of __ (divisor) equals __ (product). I'll write __ (product) under the _ (new dividend). I'll also write __ (partial quotient) to the right of the vertical line. _ (partial quotient) is one of my partial quotients.
(Write.)
Now, l'll subtract _ (product) from the dividend of _ to determine a new dividend. I write a minus sign and an equal line.
(Write minus sign and equal line.)
__ (dividend) minus __ (product) equals what?
\qquad
Let's write the difference of __ below the equal line.
(Write.)
Now, how many groups of __ (divisor) can we make with __ (new dividend)?
I'm not sure.
Let's use a partial quotient. I know that __ (friendly number) groups of __ (divisor) would be \qquad (product of friendly number times divisor). I'll write _(product) under the __ (new dividend). I'll also write __ (partial quotient) to the right of the vertical line. _ (partial quotient) is one of my partial quotients.
(Write.)
Now, l'll subtract \qquad (product) from the dividend of \qquad to determine a new dividend. I write a minus sign and an equal line.
(Write minus sign and equal line.)
_ (dividend) minus _ (product) equals what?
\qquad
Let's write the difference of __ below the equal line.
(Write.)
Now, how many groups of __ (divisor) can we make with __ (new dividend)?
\qquad
I know that __ (friendly number) groups of _ (divisor) would be \qquad friendly number times divisor). I'll write _ (product) under the _ (new
dividend). I'll also write __ (partial quotient) to the right of the vertical line. \qquad (partial quotient) is one of my partial quotients.
(Write.)
Teacher Now, l'll subtract __ (product) from the dividend of _ to determine a new dividend. I write a minus sign and an equal line.
(Write minus sign and equal line.)
Teacher \qquad minus __ equals what?

Students

Teacher

Teacher
Students
Teacher

Students
Teacher

Teacher
Students

Teacher

Teacher
Students
\qquad
Let's write the difference of __ below the equal line.
(Write.)
Can we make any more groups of __ (dividend)?
No!
We can't make any more groups of __ (dividend), so let's determine our quotient. We do this by adding the partial quotients together. How do we determine the quotient?
Add the partial quotients together.
Let's write a plus sign and equal line.
(Write plus sign and equal line.)
What's _ plus _ plus ...? (partial quotients)
\qquad _.
Let's write the sum of the partial quotients below the equal line.
(Write.)
We could also write the quotient above the division bracket.
(Write.)
What's the quotient?
—.
So, __ divided by __ equals __. Let's say that together.
\qquad
Let's say it together again.
__ divided by \qquad equals \qquad _.

Let's review. What's a dividend?

The total number that will be divided.
What's a divisor?
The number of groups we will make.
What's a quotient?
The result in each group after you equally share or measure groups.
How could you explain dividing to a friend?
We kept asking how many groups we could make with the dividend. We didn't know the exact answer, so we used computation we did know as partial quotients. At the end, we added the partial quotients for the final quotient.

Example

$\begin{array}{r} 39 \\ 12 \lcm{468} \\ -240 \\ \hline 228 \\ -120 \\ \hline 108 \\ -\quad 72 \\ \hline 36 \\ -\quad 36 \\ \hline 0 \end{array}$	$\begin{array}{r} 20 \\ 10 \\ 6 \\ +\frac{3}{39} \end{array}$
	3-DIGIT \div 2-DIGIT: EXAMPLE WITHOUT MANIPULATIVES
Teacher	Let's work on division. What does it mean to divide?
Students	To share equally or measure into groups.
Teacher	Division means to share equally or to measure into groups. Look at this problem. (Show problem.)
Teacher	First, I see a division bracket (point). The division bracket tells us to divide. What does the division bracket mean?
Students	To divide.
Teacher	Let's do this problem with our pencil, and let's use the partial quotients strategy. If I want to use the partial quotients strategy, I first draw a vertical line down from the end of the division bracket. (Draw vertical line from end of division bracket.)
Teacher	With the partial quotients strategy, we divide the dividend a few different times. Each time we create a partial quotient. At the end, we add the partial quotients to determine the final quotient. Which strategy are we using again?
Students	Partial quotients.
Teacher	Now, we start by dividing the dividend by the divisor. What's our dividend?
Students	468.
Teacher A	And we'll divide the dividend by the divisor. What's the divisor?
Students	12.
Teacher I	I don't know exactly how many groups of 12 I can make with 468 , so the partial quotients strategy can be used with computation that I do know. Which strategy are we using?
Students	Partial quotients.
Teacher	How many groups of 12 can we make with 468?

Students	I'm not sure. I don't know the exact answer either, so I'll use a partial quotient to start solving this problem. I know that 20 groups of 12 would be 240 , so l'll write
	240 under the 468 . I'll also write 20 to the right of the vertical line. 20 is one of my partial quotients. (Write 240 and 20.)
Now, l'll subtract 240 from the dividend of 468 to determine a new dividend. I	
write a minus sign and an equal line.	
(Write minus sign and equal line.)	

Students	3!
Teacher	Yes! I know that $\mathbf{3}$ groups of 12 would be 36 . I'll write 36 under the 36 . I'll also write 3 to the right of the vertical line. 3 is one of my partial quotients. (Write 36 and 3.)
Teacher	Now, I'll subtract 36 from the dividend of 36 to determine a new dividend. I write a minus sign and an equal line. (Write minus sign and equal line.)
Teacher	36 minus 36 equals what?
Students	0.
Teacher	Let's write the difference of 0 below the equal line. (Write 0.)
Teacher	This $\mathbf{0}$ is our new dividend. Can we make any more groups of 12?
Students	No!
Teacher	We can't make any more groups of 12 , so let's determine our quotient. We do this by adding the partial quotients together. How do we determine the quotient?
Students	Add the partial quotients together.
Teacher	Let's write a plus sign and equal line. (Write plus sign and equal line.)
Teacher	What's 20 plus 10 plus 6 plus 3?
Students	39.
Teacher	Let's write the sum of the partial quotients below the equal line. (Write 39.)
Teacher	We could also write the quotient above the division bracket. (Write 39.)
Teacher	What's the quotient?
Students	39.
Teacher	So, 468 divided by 12 equals 39. Let's say that together.
Students	468 divided by 12 equals 39 .
Teacher	Let's say it together again.
Students	468 divided by 12 equals 39.
Teacher	So, if you have 468 and divide by 12 , the quotient is 39 . Let's review. What's a dividend?
Students	The total number that will be divided.
Teacher	What's a divisor?
Students	The number of groups we will make.
Teacher	What's a quotient?
Students	The result in each group after you equally share or measure groups.
Teacher	How could you explain partial quotients to a friend?
Students	We kept asking how many groups of 12 we could make with the dividend. We didn't know the exact answer, so we used computation we did know as partial quotients. At the end, we added the partial quotients for the final quotient.

D. Problems for Use During Instruction

See Module 14 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 14 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 14: Division of Whole Numbers

Problem Sets

A. 2-digit by 1-digit; no remainder (10)
B. 2-digit by 1-digit; remainder (10)
C. 3-digit by 1-digit; no remainder (10)
D. 3-digit by 1-digit; remainder (10)
E. 4-digit by 1-digit; no remainder (10)
F. 4-digit by 1-digit; remainder (10)
G. 3-digit by 2-digit; no remainder (10)
H. 3-digit by 2-digit; remainder (10)
A.

A.

A.

A.

$$
6 \longdiv { 7 2 }
$$

A.

A.

A.

A.

A.

B.

C.

D.

E.

F.

G.

H.

Module 14:

 Division of Whole Numbers

 Division of Whole Numbers}

Vocabulary Cards

algorithm
computation
divide/division
dividend
division sign divisor
equal groups
equal sign
hundreds column
ones column
quotient
regroup/trade/exchange remainder
tens column

algorithm

A procedure or description of steps that can be used to solve a problem.

computation

The action used to solve a problem.

divide/division

To separate into equal groups.

dividend

The number that is to be divided in a division problem.

$$
\begin{gathered}
16 \div 8=2 \\
16 \text { is the dividend }
\end{gathered}
$$

division sign

The symbol that tells you to divide.

$16 \div 8=2$
 \div is the division sign

divisor

The number that the dividend is divided by.

$$
\begin{gathered}
16 \div 8=2 \\
8 \text { is the divisor }
\end{gathered}
$$

equal groups

Groups with the same number of objects or items in each group.

equal sign

The symbol that tells you that two sides of an equation are the same, balanced, or equal.

$$
\begin{gathered}
16 \div 8=2 \\
=\text { is the equal sign }
\end{gathered}
$$

hundreds column

The column with digits in the hundreds place.
In the number 423, 4 is in the hundreds place.

ones column

The column with digits in the ones place.
In the number 423, 3 is in the ones place.

quotient

The number that results when one number is divided by another number.

$$
\begin{gathered}
16 \div 8=2 \\
2 \text { is the quotient }
\end{gathered}
$$

regroup/trade/exchange

The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.

remainder

The amount remaining in a division problem.

tens column

The column with digits in the tens place.

In the number 423, 2 is the in the tens column.

