

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 15

Division of Rational Numbers

Module 15: Division of Rational Numbers Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
algorithm	A procedure or description of steps that can be used to solve a problem.
computation	The action used to solve a problem.
decimal	A number based on powers of ten.
denominator	The term in a fraction that tells the number of equal parts in a whole.
divide/division	To separate into equal groups.
dividend	The number that is to be divided in a division problem.
division sign	The symbol that tells you to divide.
divisor	The number that the dividend is divided by.
equal groups	Groups with the same number of objects or items in each group.
equal sign	The symbol that tells you that two sides of an equation are the same, balanced, or equal.
equivalent	Two numbers that have the same value.
fraction	A number representing part of a whole or set.
hundredths	The digit in representing $\frac{1}{100}$.
improper fraction	Any fraction in which the numerator is greater than the denominator.
least common multiple	The common multiple with the least value.
mixed number	A whole number and a fraction combined.
multiply/multiplication	The process of adding a number to itself a number of times.
multiplication sign	The symbol that tells you to multiply.
numerator	The term in a fraction that tells how many parts of a fraction.
ones	The digit representing 1.
quotient	The number that results when one number is divided by another number.
remainder	The amount left over in a division problem.
regroup/trade/exchange	The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.
tenths	The digit in representing $\frac{1}{10}$.

B. Background Information

Background Information:

In this module, we focus on division with fractions and decimals. As you focus on computation of rational numbers, continue to emphasize division as partitive (i.e., equal shares) and division as quotative (i.e., measurement) because students will see these concepts within word problems.

For division of fractions, we recommend using several models of fractions to help students understand concepts related to division of fractions. We also recommend demonstrating several algorithms for division of decimals. Every student should develop efficiency with strategies for division of fractions and decimals. In the following sections, we provide examples of (1) division of fractions, (2) division of decimals with the traditional algorithm, and (3) division of decimals with the partial quotients algorithm.

C. Routines and Examples

(1) Division of Fractions*

*Most students know the procedure for dividing decimals but do not have conceptual understanding of division of fractions. Here, we provide two conceptual Routines (one with manipulatives and one with drawings) as well as a procedural Routine. Our Example is conceptual and uses manipulatives. Consider reading the Example before reading the Routines.

Routine

Materials:

- Module 15 Problem Sets
- Module 15 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like fraction tiles or two-color counters
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES
(Only use manipulatives with simpler problems)

Teacher	Let's work on division. What does it mean to divide? Students Teacher
	To share equally or measure into groups. Division means to share equally or to measure into groups. Look at this problem. (Show problem.)
Teacher	First, I see a division sign or bracket (point). The division sign or bracket tells us to divide. What does the division sign or bracket mean?
Students	To divide.
Teacher	Let's do this problem with fraction tiles.

	(Move fraction tiles to workspace.)
Teacher	With division of fractions, we interpret this problem as \qquad (first fraction/dividend) divided by \qquad (second fraction/divisor). How do we interpret this problem?
Students	__ divided by
Teacher	When something is divided, we want to determine how many groups of the divisor we can make with the dividend. If the problem was 12 divided by 3 , you would determine how many groups of 3 you could make if you had 12 of something. The same works with fractions. We'll show the dividend (or first fraction). Which fraction will we show?
Students	The dividend or first fraction.
Teacher	And then we'll determine how many groups of the divisor (or second fraction) we can make with the dividend. We'll determine how many groups of which fraction?
Students	The divisor or second fraction.
Teacher	So, let's show the dividend with the fraction tiles. (Show dividend with fraction tiles.)
Teacher	Now, let's find __ (divisor) of _ (dividend). What's the divisor?
Students	
Teacher	Let's get out the divisor with our fraction tiles and think of it as one group. (Show divisor with fraction tiles.)
Teacher	Now, I want to learn how many groups of this divisor I can make with the dividend. What do I want to learn?
Students	How many groups of the divisor we can make with the dividend.
Teacher	To do this, I hold the divisor group under the dividend fraction tiles to see how many groups I can make. Let's see, I can make \qquad groups of \qquad (divisor). (Place divisor fraction tile group under dividend.)
Teacher	Now, I do that again until I can't make any more groups of \qquad (divisor) with the dividend. (Place divisor fraction tile group under dividend.)
Teacher	We're dividing by finding \qquad (divisor) groups of the dividend. How are we dividing?
Students	Finding __ (divisor) groups of the dividend.
Teacher	We've determined __ (divisor) groups of the dividend is
Teacher	So, __ (divisor) groups of _ (dividend) equals _ . What's the quotient?
Students	
Teacher	_ divided by _ e equals __. Let's say that together.
Students	_ divided __ equals __.
Teacher	So, if you have a group of \qquad (divisor) and you determine you can make \qquad groups of \qquad (dividend), \qquad divided by \qquad equals \qquad . Let's review. What's a dividend?
Students	The total number that will be divided.

Teacher Students Teacher	What's a divisor? The number of groups we will make. What's a quotient?
Teacher	The result in each group after you make groups. How could you explain dividing to a friend?
Students	We showed the dividend with the fraction tiles. Then, we determined how many groups of the divisor we could make with the dividend. The quotient was the number of groups we could make.
	ROUTINE WITHOUT MANIPULATIVES OR DRAWINGS
Let's work on division. What does it mean to divide?	

What's __times __?

Students
Teacher

Teacher

Students
Teacher
Students
Teacher

Teacher

Students

Teacher
Students

Teacher

Students
Teacher
Students
Teacher
Students
Teacher
Students
.
_ times __ equals __, so let's write __ as the numerator of our quotient.
(Write numerator.)
Let's focus on the denominators. What are the denominators in this problem?
__ and __.
What's __times __?
\qquad
_ times __ equals \qquad , so let's write \qquad as the denominator of our quotient.
(Write denominator.)
So, __ (dividend) divided by _ (divisor) equals _ . What's the quotient?
(If quotient is not in simplest form, use greatest common factor to determine an equivalent fraction in simplest form.)
__ divided by __ equals __. Let's say that together. __ divided by __ equals _.
So, if you have __ (dividend) and you divide by __ (divisor), __ divided by __ equals __. Let's review. What's a dividend?
The total number that will be divided.
What's a divisor?
The number of groups we will make.
What's a quotient?
The result in each group after you make groups.
How could you explain dividing to a friend?
We used the reciprocal of the divisor and multiplied the dividend by the reciprocal.

Examples
$\frac{5}{6} \div \frac{2}{3}=\frac{5}{4}$

Step 1: Show dividend (five-sixths).

Step 2: Mark groups of divisor (two-thirds).

Step 2:Markgroups of divisortwo-thirds.							

EXAMPLE WITH DRAWING

Teacher	Let's work on division. What does it mean to divide?
Students	To share equally or measure into groups.
Teacher	Division means to share equally or to measure into groups. Look at this problem. (Show problem.)
Teacher	First, I see a division sign or bracket (point). The division sign or bracket tells us to divide. What does the division sign or bracket mean?
Students	To divide.
Teacher	Let's do this problem by drawing. How will we do this problem?
Students	By drawing
Teacher	With division of fractions, we interpret this problem as five-sixths divided by two-thirds. How do we interpret this problem?
Students	Five-sixths divided by two-thirds.
Teacher	When something is divided, we want to determine how many groups of the divisor we can make with the dividend. With our drawing, we'll show the dividend (or first fraction). Which fraction will we draw?
Students	The dividend or first fraction.
Teacher	And then we'll determine how many groups of the divisor (or second fraction) we can make with the dividend. We'll determine how many groups of which fraction?
Students	The divisor or second fraction.
Teacher	So, let's show the dividend. I'll draw a rectangle divided into six equal parts. (Draw.)
Teacher	I need to shade the numerator. How many equal parts should I shade?
Students	5.
Teacher	So, l'll shade 5 equal parts. (Shade.)

Teacher	Now, let's find two-thirds of five-sixths. What's the divisor?
Students	Two-thirds.
Teacher	I want to figure out how much one group of two-thirds would be when I have five-sixths. Let's see, two-thirds is equivalent to four-sixths. What's two-thirds equivalent to?
Students	Four-sixths.
Teacher	So, l'll draw a dark rectangle around one group of two-thirds (or foursixths). (Draw.)
Teacher	I can make one full group of two-thirds. In that group of two-thirds, I see I have 1, 2, 3, 4 equal parts. So, 4 will be my new denominator. What's the new denominator?
Students	4.
Teacher	Let's see. I keep drawing dark rectangles around groups of two-thirds (or four-sixths) until I've used all of the five-sixth shaded parts. Let's draw another dark rectangle around the same size as the first. (Draw.)
Teacher	Now, with this group of two-thirds, is it a full group?
Students	No!
Teacher	It isn't a full group of two-thirds. How much of the group did we make? Remember, we determined 4 would be our new denominator. So, how much of this group of two-thirds is shaded?
Students	One-fourth.
Teacher	That's right. One-fourth of this group of two-thirds is shaded. So, when we divide five-sixths and make groups of two-thirds, we can make 1 full group of two-thirds and one-fourth of the next group of two-thirds. Our quotient is 1 and one-fourth or five-fourths. What's the quotient?
Students	1 and one-fourth or five-fourths.
Teacher	So, five-sixths divided by two-thirds equals five-fourths. Let's say that together.
Students	Five-sixths divided by two-thirds equals five-fourths.
Teacher	Let's review. What's a dividend?
Students	The total number that will be divided.
Teacher	What's a divisor?
Students	The number of groups we will make.
Teacher	What's a quotient?
Students	The result in each group after you make groups.
Teacher	How could you explain dividing to a friend?
Students	We drew the dividend. Then, we determined how many groups of the divisor we could make with the dividend. The quotient was the number of groups we could make.

Example

$$
\frac{7}{8} \div \frac{1}{2}=\frac{7}{4}
$$

Step 1: Show dividend (seven-eighths).

| $\frac{1}{8}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

EXAMPLE WITH MANIPULATIVES

Teacher	Let's work on division. What does it mean to divide?
Students	To share equally or measure into groups.
Teacher	Division means to share equally or to measure into groups. Look at this problem. (Show problem.)
Teacher	First, I see a division sign or bracket (point). The division sign or bracket tells us to divide. What does the division sign or bracket mean?
Students	To divide.
Teacher	Let's do this problem using the fraction tiles. How will we do this problem?
Students	With the fraction tiles. (Show fraction tiles.)
Teacher	With division of fractions, we interpret this problem as seven-eighths divided by one-half. How do we interpret this problem?
Students	Seven-eighths divided by one-half.
Teacher	When something is divided, we want to determine how many groups of the divisor we can make with the dividend. With our fraction tiles, we'll show the dividend (or first fraction). Which fraction will we show?
Students	The dividend or first fraction.
Teacher	And then we'll determine how many groups of the divisor (or second fraction) we can make with the dividend. We'll determine how many groups of which fraction?
Students	The divisor or second fraction.
Teacher	So, let's show the dividend. I'll show the whole and then show seven-eighths compared to the whole. (Use fraction tiles.)
Teacher	Now, let's find how many groups of one-half we can make with seveneighths. What's the divisor?

Students	One-half.
Teacher	
I want to figure out how many groups of one-half I can make if I have seven-	
eighths. So, I'll get out my one-half fraction tile to compare to the seven-	
eighths.	
(Show one-half tile.)	
Let's see how many groups of one-half I can make. I can make 1 group of one-	
half.	
(Compare one-half tile to four one-eighth pieces.)	

(2) Division of Decimals with Traditional Algorithm

Routine

Materials:

- Module 15 Problem Sets
- Module 15 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

3-DIGIT \div 2-DIGIT: EXAMPLE WITHOUT MANIPULATIVES

Teacher	Let's work on division. What does it mean to divide?
Students	To share equally or measure into groups.
Teacher	Division means to share equally or to measure into groups. Look at this problem. (Show problem.)
Teacher	First, I see a division bracket (point). The division bracket tells us to divide. What does the division bracket mean?
Students	To divide.
Teacher	Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the ones from the tenths and the tenths from the hundredths. Let's draw a vertical line between each of the columns in the dividend. (Draw vertical lines to separate place value columns.)
Teacher	Now, we start by dividing the dividend by the divisor. What's our dividend?
Students	
Teacher	And we'll divide the dividend by the divisor. What's the divisor?
Students	
Teacher	When we divide using this method, for each place value in the dividend, the first thing we do is divide. If we can divide, then we multiply, subtract, and then bring in the next place value. So, the pattern is: divide, multiply, subtract, bring in. Say that with me.
Students	Divide, multiply, subtract, bring in.
Teacher	And we keep repeating that pattern until we have solved the problem. Let's see how it works. Are you ready?
Students	Yes!
Teacher	Okay, so we start with the greatest place value of the dividend. Where do we start?
Students	Greatest place value of the dividend.
Teacher	In this problem, the greatest place value of the dividend is __. What number?
Students	_.
Teacher	How many groups of _ (divisor) can we make with _ ?

Students Teacher	We can't make any groups of \qquad We can't make a group of \qquad (divisor). So, now we bring in the \qquad (next place value in dividend) to make \qquad . I think how many groups of \qquad can we make if we have \qquad (divisor)?
Students	We can make __ groups of __ (divisor).
Teacher	We can make \qquad groups. So, let's write \qquad above the division bracket. (Write.)
Teacher	So, now let's multiply __times _ (divisor). What's __ times __?
Students	
Teacher	Let's write that product of \qquad below the \qquad in the dividend. (Write.)
Teacher	Now, let's write a minus sign and an equal line to help us subtract \qquad from \qquad What sign?
Students	Minus sign.
Teacher	What do we subtract?
Students	__minus
Teacher	What's __ minus __?
Students	
Teacher	Let's write the difference here under the equal line. (Write.)
Teacher	Now, we bring in the next digit of the dividend to our difference. I like to show this by drawing an arrow from the \qquad and rewriting the \qquad next to \qquad (Draw arrow and write.)
Teacher	When I bring in the \qquad now becomes \qquad . This is our new dividend. What's our new dividend?
Students	
Teacher	So, we followed the steps of division: divide, multiply, subtract, bring in. Say that with me.
Students	Divide, multiply, subtract, bring in.
Teacher	But the problem isn't finished. Let's follow the steps again: divide, multiply, subtract, bring in. What do we do?
Students	Divide, multiply, subtract, bring in.
Teacher	How many groups of _ (divisor) can we make with our new dividend of __?
Students	__ groups.
Teacher	We can make \qquad groups. So, let's write \qquad above the division bracket. (Write.)
Teacher	So, let's multiply. What's _ times _ (divisor)?
Students	
Teacher	Let's write \qquad below the \qquad (Write.)
Teacher	Now, let's write a minus sign and an equal line. What sign?
Students	Minus sign.
Teacher	And let's subtract _ minus _ . What do we subtract?
Students	_ minus __.

Teacher	What's __ minus __?
Students	
Teacher	Let's write the difference here under the equal line. (Write.)
Teacher	Now, do we have any remaining?
Students	Yes!
Teacher	Just like before, we have to bring in a number to keep dividing. I'll bring in the next digit from the dividend. (Draw arrow and write.)
Teacher	When I bring in the \qquad now becomes \qquad . This is our new dividend. What's our new dividend?
Students	
Teacher	Let's follow the steps again: divide, multiply, subtract, bring in. What do we do?
Students	Divide, multiply, subtract, bring in.
Teacher	How many groups of __ (divisor) can we make with our new dividend of __?
Students	__ groups.
Teacher	We can make \qquad groups. So, let's write \qquad above the division bracket. (Write.)
Teacher	So, let's multiply. What's __ times __ (divisor)?
Students	
Teacher	Let's write \qquad below the \qquad (Write.)
Teacher	Now, let's write a minus sign and an equal line. What sign?
Students	Minus sign.
Teacher	And let's subtract _ minus _ . What do we subtract?
Students	_ minus _
Teacher	What's __ minus __?
Students	
Teacher	Let's write the difference here under the equal line. (Write.)
Teacher	Now, do we have any remaining?
Students	No!
Teacher	Now, we seem finished but we're not. In this problem, we divided decimals. So, we have to place the decimal point in the quotient. What do we have to place in the product?
Students	A decimal point.
Teacher	To place the decimal point, we determine the number of decimal places in the dividend and divisor. Let's see. The dividend had \qquad decimal places. The divisor also had \qquad decimal places. What's \qquad plus ? \qquad
Students	
Teacher	So, in the quotient, we need to put in \qquad decimal places starting from the least place value (or the right). That means I'll place a decimal point between the \qquad and . \qquad

Teacher So, what's the quotient?

Students The total number that will be divided.

Students
Teacher

Students
Teacher

Teacher
Students
Teacher
Students
Teacher
Students
\qquad
The quotient is _. So, __ (dividend) divided by _ (divisor) equals __. Say that with me.
\qquad divided by \qquad equals \qquad .

```
So, if you have
``` \(\qquad\)
``` and divide by
``` \(\qquad\)
``` the quotient is
``` \(\qquad\)
``` . Let's review. What's a
``` dividend?

What's a divisor?
The number of groups we will make.
What's a quotient?
The result in each group after you equally share or measure groups.
How could you explain dividing to a friend?
We asked ourselves about how many groups we can make with the divisor from the dividend. The number of groups is the quotient.

\section*{Example}
\begin{tabular}{r}
0.788 \\
\(5 \longdiv { 3 . 9 4 0 }\) \\
\(-35 \downarrow\) \\
\hline 44 \\
\(-40 \downarrow\) \\
\hline 40 \\
-40 \\
\hline 0
\end{tabular}

3-DIGIT \(\div 1\)-DIGIT: EXAMPLE WITHOUT MANIPULATIVES

Teacher
Students
Teacher Division means to share equally or to measure into groups. Look at this problem.
(Show problem.)
Teacher First, I see a division bracket (point). The division bracket tells us to divide. What does the division bracket mean?
Students To divide.
Teacher Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the ones from the tenths and the tenths from the hundredths. Let's draw a vertical line between each of the columns in the dividend.
(Draw vertical lines to separate place value columns.)
Teacher Now, we start by dividing the dividend by the divisor. What's our dividend?
Let's work on division. What does it mean to divide?
To share equally or measure into groups.

Students 3.94.
Teacher
Students
Teacher

Students
And we'll divide the dividend by the divisor. What's the divisor?
5.

When we divide using this method, for each place value in the dividend, the first thing we do is divide. If we can divide, then we multiply, subtract, and then bring in the next place value. So, the pattern is: divide, multiply, subtract, bring in. Say that with me.

Teacher

Students Divide, multiply, subtract, bring in.
And we keep repeating that pattern until we have solved the problem. Let's see how it works. Are you ready?

Teacher Okay, so we start with the greatest place value of the dividend. Where do we start?
Students Greatest place value of the dividend.
Teacher In this problem, the greatest place value of the dividend is 3 . What number?
Students 3.

Teacher
How many groups of 5 can we make with 3 ?
Students We can't make any groups of 5 if we have 3.
Teacher We can't make a group of 5. So, now we bring in the 9 to make 39. I think how many groups of 39 can we make if we have 5 ?
Students
We can make 7 groups of 5 .
Teacher
We can make 7 groups. So, let's write 7 above the division bracket in the tenths column.
(Write 7.)
Teacher
Students
So, now let's multiply 7 times \(\mathbf{5}\). What's 7 times 5 ?

Teacher Let's write that product of 35 below the 39 in the dividend.
(Write 35.)
Teacher Now, let's write a minus sign and an equal line to help us subtract 35 from 39. What sign?
Students Minus sign.
Teacher What do we subtract?
Students 39 minus 35.
Teacher What's 39 minus 35?
Students 4.
Teacher Let's write the difference here under the equal line.
(Write 4.)
Teacher Now, we bring in the hundredth to our difference. I like to show this by drawing an arrow from the 4 and rewriting the 4 next to 4.
(Draw arrow and write 4.)
Teacher When I bring in the 4, 4 now becomes 44. This is our new dividend. What's our new dividend?
Students 44.
\begin{tabular}{|c|c|}
\hline Teacher & So, we followed the steps of division: divide, multiply, subtract, bring in. Say that with me. \\
\hline Students & Divide, multiply, subtract, bring in. \\
\hline Teacher & But the problem isn't finished. Let's follow the steps again: divide, multiply, subtract, bring in. What do we do? \\
\hline Students & Divide, multiply, subtract, bring in. \\
\hline Teacher & How many groups of 5 can we make with our new dividend of 44? \\
\hline Students & 8 groups. \\
\hline Teacher & \begin{tabular}{l}
We can make 8 groups. So, let's write 8 above the division bracket in the hundredths column. \\
(Write 8.)
\end{tabular} \\
\hline Teacher & So, let's multiply. What's 8 times 5? \\
\hline Students & 40. \\
\hline Teacher & Let's write 40 below the 44 . (Write 40.) \\
\hline Teacher & Now, let's write a minus sign and an equal line. What sign? \\
\hline Students & Minus sign. \\
\hline Teacher & And let's subtract 44 minus 40 . What do we subtract? \\
\hline Students & 44 minus 40. \\
\hline Teacher & What's 44 minus 40? \\
\hline Students & 4. \\
\hline Teacher & Let's write the difference here under the equal line. (Write 4.) \\
\hline Teacher & Now, do we have any remaining? \\
\hline Students & Yes! \\
\hline Teacher & Just like before, we have to bring in a number to keep dividing. This time, l'll bring in from the hundredths place. Is there a number written in the hundredths place? \\
\hline Students & No. \\
\hline Teacher & There is no number written there. But what number is in the thousandths place just holding place value? \\
\hline Students & Zero. \\
\hline Teacher & \begin{tabular}{l}
Yes, we assume a zero is in the thousandths place. So, I'll bring in a 0 . I like to show this by drawing an arrow from the assumed 0 and writing the 0 next to 4. \\
(Draw arrow and write 0.)
\end{tabular} \\
\hline Teacher & When I bring in the 0,4 now becomes 40 . This is our new dividend. What's our new dividend? \\
\hline Students & 40. \\
\hline Teacher & Let's follow the steps again: divide, multiply, subtract, bring in. What do we do? \\
\hline Students & Divide, multiply, subtract, bring in. \\
\hline Teacher & How many groups of 5 can we make with our new dividend of 40? \\
\hline Students & 8 groups. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Teacher & \begin{tabular}{l}
We can make 8 groups. So, let's write 8 above the division bracket in the thousandths column. \\
(Write 8.)
\end{tabular} \\
\hline Teacher & So, let's multiply. What's 8 times 5? \\
\hline Students & 40. \\
\hline Teacher & Let's write 40 below the 40. (Write 40.) \\
\hline Teacher & Now, let's write a minus sign and an equal line. What sign? \\
\hline Students & Minus sign. \\
\hline Teacher & And let's subtract 40 minus 40 . What do we subtract? \\
\hline Students & 40 minus 40. \\
\hline Teacher & What's 40 minus 40? \\
\hline Students & 0. \\
\hline Teacher & Let's write the difference here under the equal line. (Write 0.) \\
\hline Teacher & Now, do we have any remaining? \\
\hline Students & No! \\
\hline Teacher & Now, we seem finished but we're not. In this problem, we divided decimals. So, we have to place the decimal point in the quotient. What do we have to place in the product? \\
\hline Students & A decimal point. \\
\hline Teacher & To place the decimal point, we determine the number of decimal places in the dividend and divisor. Let's see. The dividend had 3 decimal places. The divisor had \(\mathbf{0}\) decimal places. What's 3 plus 0 ? \\
\hline Students & 3. \\
\hline Teacher & So, in the quotient, we need to put in 3 decimal places starting from the least place value (or the right). That means I'll place a decimal point between the 0 and 7. \\
\hline Teacher & So, what's the quotient? \\
\hline Students & 0.788 . \\
\hline Teacher & The quotient is \(\mathbf{0 . 7 8 8}\). So, \(\mathbf{3 . 9 4}\) divided by 5 equals \(\mathbf{0 . 7 8 8}\). Say that with me. \\
\hline Students & 3.94 divided by 5 equals 0.788 . \\
\hline Teacher & So, if you have 3.94 and divide by 5 , the quotient is 0.788 . Let's review. What's a dividend? \\
\hline Students & The total number that will be divided. \\
\hline Teacher & What's a divisor? \\
\hline Students & The number of groups we will make. \\
\hline Teacher & What's a quotient? \\
\hline Students & The result in each group after you equally share or measure groups. \\
\hline Teacher & How could you explain dividing to a friend? \\
\hline Students & We asked ourselves about how many groups we can make with the divisor from the dividend. The number of groups is the quotient. \\
\hline
\end{tabular}

\section*{(3) Division with Partial Quotients Algorithm* \\ *For clarity, read Example before using Routines.}

\section*{Routine}

\section*{Materials:}
- Module 15 Problem Sets
- Module 15 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

\section*{3-DIGIT : 2-DIGIT: ROUTINE WITHOUT MANIPULATIVES}
\begin{tabular}{ll}
\begin{tabular}{l}
Teacher \\
Students \\
Teacher
\end{tabular} & \begin{tabular}{l}
Let's work on division. What does it mean to divide? \\
To share equally or measure into groups. \\
Division means to share equally or to measure into groups. Look at this \\
problem. \\
(Show problem.)
\end{tabular} \\
Teacher & \begin{tabular}{l}
First, I see a division bracket (point). The division bracket tells us to divide. \\
What does the division bracket mean?
\end{tabular} \\
Students & \begin{tabular}{l}
To divide. \\
Let's do this problem with our pencil, and let's use the partial quotients
\end{tabular} \\
& \begin{tabular}{l}
strategy. If I want to use the partial quotients strategy, I first draw a vertical \\
line down from the end of the division bracket.
\end{tabular} \\
(Draw vertical line from end of division bracket.)
\end{tabular}
would be __ (friendly number times divisor product), so l'll write __ (product) under the _ (dividend). I'll also write __ (partial quotient) to the right of the vertical line. __ is one of my partial quotients.
(Write.)
Teacher Now, l'll subtract __ (product) from the dividend of __ to determine a new dividend. I write a minus sign and an equal line.
(Write minus sign and equal line.)
Teacher
Students
Teacher
Teacher
Students Teacher __ (dividend) minus __ (product) equals what?
\(\qquad\)
Let's write the difference of __ below the equal line.
(Write.)
Now, how many groups of _ (divisor) can we make with _ (new dividend)?
I'm not sure.
Again, I don't know the exact answer either, so l'll use a partial quotient. I know that _ (friendly number) groups of __ (divisor) would be __ I'll write __ (product) under the __ (new dividend). I'll also write __ (partial quotient) to the right of the vertical line. _ is one of my partial quotients. (Write.)
Teacher
Now, l'll subtract _ (product) from the dividend of __ (new dividend) to determine a new dividend. I write a minus sign and an equal line.
(Write minus sign and equal line.)
Teacher
Students
Teacher(new dividend) minus _ (product) equals what?
\(\qquad\)
Let's write the difference of __ below the equal line.
(Write.)
Teacher
Students
Teacher

Teacher

Teacher
Students

Teacher

Teacher
Students
Teacher

Students Now, how many groups of __ (divisor) can we make with __?
\(\qquad\)
\(\qquad\)
-
Yes! I know that __ (friendly number) groups of __ (divisor) would be \(\qquad\) . I'll write __ under the _ (new dividend). I'll also write __ (partial quotient) to the right of the vertical line. __ is one of my partial quotients. (Write.)
Now, I'll subtract __ from the dividend of __ to determine a new dividend. I write a minus sign and an equal line.
(Write minus sign and equal line.)
\(\qquad\) minus __ equals what?
\(\qquad\)
Let's write the difference of \(\qquad\) below the equal line. (Write.)
This is our new dividend. Can we make any more groups of __ (divisor)? No!
We can't make any more groups of __ (divisor), so let's determine our quotient. We do this by adding the partial quotients together. How do we determine the quotient?
Add the partial quotients together.

Teacher Let's write a plus sign and equal line.
(Write plus sign and equal line.)
Teacher
Students What's _plus \(\qquad\) plus ...?
\(\qquad\) —.
Teacher Let's write the sum of the partial quotients below the equal line. (Write.)
Teacher We also could write the quotient above the division bracket.
(Write.)
Teacher What's the quotient?
Students

Students
\(\qquad\) -.
Now, we seem finished but we're not. In this problem, we divided decimals. So, we have to place the decimal point in the quotient. What do we have to place in the quotient?

Teacher To place the decimal point, we determine the number of decimal places in the dividend and divisor. Let's see. The dividend had __ decimal places. The divisor also had __ decimal places. What's _ plus __?
Students __.

Teacher

Teacher
Students

So, in the quotient, we need to put in \(\qquad\) decimal places starting from the greatest place value of the quotient. That means l'll place a decimal point \(\qquad\) . (Write decimal point.)
So, what's the quotient?
\(\qquad\)
—.
So, __ divided by __ equals __. Let's say that together.
\(\qquad\) divided by \(\qquad\) equals \(\qquad\)
Let's say it together again.
__ divided by \(\qquad\) equals \(\qquad\) _.

Let's review. What's a dividend?
The total number that will be divided.
What's a divisor?
The number of groups we will make.
What's a quotient?
The result in each group after you equally share or measure groups.
How could you explain partial quotients to a friend?
We kept asking how many groups of the divisor we could make with the dividend. We didn't know the exact answer, so we used computation we did know as partial quotients. At the end, we added the partial quotients for the final quotient.

\section*{Example}
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{r}
31 . \\
2 . 4 \longdiv { 7 4 . 4 } \\
-480 \\
\hline 264 \\
-240 \\
\hline 24 \\
-\quad 24 \\
\hline
\end{array}
\] & \[
\begin{array}{|r}
20 \\
10 \\
+1 \\
\hline 31
\end{array}
\] \\
\hline & 3-DIGIT \(\div\) 2-DIGIT: EXAMPLE WITHOUT MANIPULATIVES \\
\hline Teacher & Let's work on division. What does it mean to divide? \\
\hline Students & To share equally or measure into groups. \\
\hline Teacher & \begin{tabular}{l}
Division means to share equally or to measure into groups. Look at this problem. \\
(Show problem.)
\end{tabular} \\
\hline Teacher & First, I see a division bracket (point). The division bracket tells us to divide. What does the division bracket mean? \\
\hline Students & To divide. \\
\hline Teacher & \begin{tabular}{l}
Let's do this problem with our pencil, and let's use the partial quotients strategy. If I want to use the partial quotients strategy, I first draw a vertical line down from the end of the division bracket. \\
(Draw vertical line from end of division bracket.)
\end{tabular} \\
\hline Teacher & With the partial quotients strategy, we divide the dividend a few different times. Each time we create a partial quotient. At the end, we add the partial quotients to determine the final quotient. Which strategy are we using again? \\
\hline Students & Partial quotients. \\
\hline Teacher & Now, we start by dividing the dividend by the divisor. What's our dividend? \\
\hline Students & 74.4. \\
\hline Teacher & And we'll divide the dividend by the divisor. What's the divisor? \\
\hline Students & 2.4. \\
\hline Teacher & When we divide with decimals, let's ignore all the decimals for now. We'll interpret this as \(\mathbf{7 4 4}\) divided by \(\mathbf{2 4}\). We'll bring back the decimals at the end. What will we ignore for now? \\
\hline Students & Decimals. \\
\hline Teacher & I don't know exactly how many groups of 24 I can make with 744 , so the partial quotients strategy can be used with computation that I do know. Which strategy are we using? \\
\hline Students & Partial quotients. \\
\hline Teacher & How many groups of \(\mathbf{2 4}\) can we make with 744? \\
\hline Students & I'm not sure. \\
\hline
\end{tabular}
\begin{tabular}{ll}
Teacher & \begin{tabular}{l}
I don't know the exact answer either, so l'll use a partial quotient to start \\
solving this problem. I know that 20 groups of 24 would be 480 , so l'll write \\
\\
480 under the 744 . I'll also write 20 to the right of the vertical line. 20 is one \\
of my partial quotients. \\
(Write 480 and 20.)
\end{tabular} \\
Now, l'll subtract 480 from the dividend of 744 to determine a new dividend. I \\
write a minus sign and an equal line. \\
(Write minus sign and equal line.)
\end{tabular}

Students Add the partial quotients together.
Teacher Let's write a plus sign and equal line.
(Write plus sign and equal line.)
Teacher What's \(\mathbf{2 0}\) plus \(\mathbf{1 0}\) plus 1?
Students 31.
Teacher Let's write the sum of the partial quotients below the equal line. (Write 31.)
Teacher We also could write the quotient above the division bracket.
(Write 31.)
Teacher What's the quotient?
Students 31.
Teacher Now, we seem finished but we're not. In this problem, we divided decimals. So, we have to place the decimal point in the quotient. What do we have to place in the quotient?
Students A decimal point.
Teacher To place the decimal point, we determine the number of decimal places in the dividend and divisor. Let's see. The dividend had 1 decimal place. The divisor also had 1 decimal place. What's 1 plus 1 ?
Students 2.
Teacher So, in the quotient, we need to put in 2 decimal places starting from the greatest place value of the quotient. That means l'll place a decimal point after the 31 . I would write 31.0 if I wanted to do so.
(Write decimal point.)
Teacher So, what's the quotient?
Students 31.0.
Teacher So, 74.4 divided by 2.4 equals 31.0. Let's say that together.
Students 74.4 divided by 2.4 equals 31.0.
Teacher Let's say it together again.
Students 74.4 divided by 2.4 equals 31.0.
Teacher Let's review. What's a dividend?
Students The total number that will be divided.
Teacher What's a divisor?
Students The number of groups we will make.
Teacher What's a quotient?
Students The result in each group after you equally share or measure groups.
Teacher How could you explain partial quotients to a friend?
Students We kept asking how many groups of 24 we could make with the dividend. We didn't know the exact answer, so we used computation we did know as partial quotients. At the end, we added the partial quotients for the final quotient.

\section*{D. Problems for Use During Instruction}

See Module 15 Problem Sets.

\section*{E. Vocabulary Cards for Use During Instruction}

See Module 15 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

\section*{Module 15: Division of Rational Numbers}

\section*{Problem Sets}
A. Proper fractions (30)
B. Improper fractions (15)
C. Mixed numbers (15)
D. Decimals with tenths; no remainder (20)
E. Decimals with hundredths; no remainder (20)
F. Decimals with tenths and hundredths; no remainder (30)
G. Decimals with tenths and hundredths; remainder (10)

D.
\(0 . 3 \longdiv { 2 . 4 }\)
D.
\(0 . 5 \longdiv { 4 . 5 }\)
D.
\(0 . 7 \longdiv { 9 . 1 }\)

D.
\(0 . 1 \longdiv { 0 . 8 }\)
\(0 . 6 \longdiv { 4 . 2 }\)
D.
\(0 . 8 \longdiv { 7 . 2 }\)
\(0 . 1 \longdiv { 3 . 6 }\)
\(0 . 2 \longdiv { 2 . 8 }\)
D.
\(0 . 9 \longdiv { 5 . 4 }\)
\(0 . 4 \longdiv { 9 . 6 }\)

D.
\(0 . 7 \longdiv { 7 . 7 }\)
D.
\(0 . 6 \longdiv { 4 . 8 }\)
D.
\(0 . 3 \longdiv { 5 . 1 }\)

D.
\(0 . 8 \longdiv { 9 . 6 }\)
D.
\(0 . 4 \longdiv { 7 . 2 }\)
\(0 . 5 \longdiv { 9 . 5 }\)
\(0 . 2 \longdiv { 6 . 4 }\)

\section*{\(6 \longdiv { 8 . 6 4 }\)}
\(3 \longdiv { 3 . 9 3 }\)
\(8 \longdiv { 4 . 3 2 }\)

\section*{\(4 \longdiv { 8 . 8 4 }\)}

\(9 \longdiv { 9 . 0 9 }\)

\(8 \longdiv { 2 . 8 8 }\)

\(. 0 4 \longdiv { 1 6 }\)

\(5 \longdiv { 3 . 6 5 }\)
\[
4 \longdiv { 1 2 . 0 8 }
\]
\(. 0 8 \longdiv { . 6 4 }\)
\(. 0 9 \longdiv { 1 0 . 8 9 }\)
\(. 1 6 \longdiv { 5 . 6 7 }\)
\(. 4 5 \longdiv { 1 4 . 8 5 }\)
\(6 . 2 \longdiv { 2 3 . 2 5 }\)

\section*{\(3 . 6 \longdiv { 2 7 . 6 8 }\)}

\(4 . 1 8 \longdiv { 4 1 . 8 0 }\)

\section*{\(0 . 8 \longdiv { 1 . 6 8 }\)}
\[
4 . 2 \longdiv { 1 4 . 2 8 }
\]

\section*{\(3 . 3 \longdiv { 2 0 . 4 6 }\)}
\(2 . 3 \longdiv { 1 9 . 3 2 }\)

\title{
\(1 . 8 \longdiv { 1 5 . 4 8 }\)
}

\section*{\(4 . 8 \longdiv { 5 . 2 8 }\)}

\section*{\(1 . 9 \longdiv { 9 3 . 1 }\)}

\section*{\(5 . 1 \longdiv { 1 9 . 3 8 }\)}

\section*{\(0 . 9 \longdiv { 9 . 5 4 }\)}

\section*{\(7 . 9 \longdiv { 5 1 . 3 5 }\)}

\section*{\(6 . 8 \longdiv { 8 8 . 4 }\)}

\section*{\(6 . 1 \longdiv { 1 2 . 2 }\)}

\section*{\(4 . 5 \longdiv { 1 7 . 1 }\)}

\title{
\(7 . 8 \longdiv { 3 1 . 9 8 }\)
}

\section*{\(3 . 1 \longdiv { 2 4 . 1 8 }\)}

\section*{\(1 . 7 \longdiv { 5 4 . 2 3 }\)}

\section*{\(3 . 8 \longdiv { 8 3 . 6 }\)}
\(0 . 3 \longdiv { 7 9 . 5 }\)

\section*{\(3 . 8 \longdiv { 4 7 . 5 }\)}

\section*{\(5 . 1 \longdiv { 7 5 . 9 9 }\)}

\section*{\(4 . 8 \longdiv { 4 7 . 0 7 }\)}
\(4 . 3 \longdiv { 3 6 . 1 2 }\)

\section*{\(1 . 8 \longdiv { 7 . 2 }\)}

\section*{\(8 . 4 \longdiv { 2 4 . 3 6 }\)}

\title{
\(1 . 9 \longdiv { 8 1 . 8 9 }\)
}

\section*{\(6 \longdiv { 7 . 1 8 }\)}

\section*{\(9 \longdiv { 2 . 6 9 }\)}
\[
4 \longdiv { 9 . 8 3 }
\]

\section*{\(3 \longdiv { 8 . 4 1 }\)}
\(9 . 1 3 \longdiv { 9 . 9 2 }\)
\(5 . 9 9 \longdiv { 4 1 . 9 }\)

\(6 . 0 4 \longdiv { 7 5 . 9 6 }\)

\section*{\(6 . 2 1 \longdiv { 6 . 9 9 }\)}

\section*{\(8 . 6 4 \longdiv { 4 7 . 4 }\)}

\section*{Module 15: Division of Rational Numbers}

\section*{Vocabulary Cards}
algorithm
computation
decimal
denominator
divide/division
dividend
division sign
divisor
equal groups
equal sign
fractions
hundredths
improper fraction
least common multiple
mixed number
numerator
ones
quotient
reciprocal
remainder
regroup/trade/exchange
tenths

\section*{algorithm}

A procedure or description of steps that can be used to solve a problem.

\section*{computation}

The action used to solve a problem.

\section*{decimal}

A number based on powers of ten.

\section*{denominator}

The term in a fraction that tells the number of equal parts in a whole.
\[
2 / 3 \frac{2}{3} \text { In these fractions, } 3 \text { is the denominator. }
\]

\section*{divide/division}

To separate into equal groups.

\section*{dividend}

The number that is to be divided in a division problem.
\[
\begin{gathered}
16 \div 8=2 \\
16 \text { is the dividend }
\end{gathered}
\]

\section*{division sign}

The symbol that tells you to divide.

\title{
\(16 \div 8=2\) \\ \(\div\) is the division sign
}

\section*{divisor}

The number that the dividend is divided by.
\[
\begin{gathered}
16 \div 8=2 \\
8 \text { is the divisor }
\end{gathered}
\]

\section*{equal groups}

Groups with the same number of objects or items in each group.

equal sign
The symbol that tells you that two sides of an equation are the same, balanced, or equal.
\[
\begin{gathered}
16 \div 8=2 \\
=\text { is the equal sign }
\end{gathered}
\]

\section*{fraction}

A number representing part of a whole or set.
\[
\frac{3}{6} \quad \frac{10}{12} \quad \frac{8}{3}
\]

\section*{hundredths}

The digit in representing \(\frac{1}{100}\).
In the number 4.23, 3 is in the hundredths place.

\section*{improper fraction}

Any fraction in which the numerator is greater than the denominator.
\[
\frac{9}{4} \quad \frac{17}{12} \quad \frac{10}{3}
\]

\section*{least common multiple}

The common multiple with the least value.
\[
\begin{aligned}
& 6: 6,12,18,(24,30 \\
& 8: 8,16,24,32,40
\end{aligned}
\]

With multiples of \(\mathbf{6}\) and 8 , the least common multiple is 24.

\section*{mixed number}

A whole number and a fraction combined.
\[
1 \frac{1}{6} \quad 4 \frac{5}{12} \quad 12 \frac{4}{3}
\]

\section*{numerator}

The term in a fraction that tells how many parts of a fraction.
\(2 / 3 \frac{2}{3}\) In these fractions, 2 is the numerator.

\section*{ones}

The digit representing 1.
In the number 4.23, 4 is in the ones place.

\section*{quotient}

The number that results when one number is divided by another number.
\(16 \div 8=2\)
2 is the quotient

\section*{reciprocal}

The reciprocal of a number is \(\mathbf{1}\) divided by that number. original number
\[
\begin{array}{ll}
4 & 9 \\
\hline 9 & 4
\end{array}
\]

\section*{remainder}

The amount left over in a division problem.

\section*{regroup/trade/exchange}

The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.

\section*{tenths}

The digit in representing \(\frac{1}{10}\).
In the number 4.23, 2 is in the tenths place.```

