

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 17

Integers

Module 17: Integers Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
absolute value	The distance of a number from 0 on a number line.
integer	A positive or negative whole number.
negative number	Any number less than 0.
number line	A straight line with numbers placed at equal intervals along its length.
opposites	Two numbers that are equal distance from 0 on a number line.
positive number	Any number greater than 0.
zero pair	A pair of numbers with a sum of 0.

B. Background Information

In this module, we focus on integers. An integer is a positive or negative whole number. We use the following different models to help students understand integers: (1) Number Line, (2) TwoColor Counters, and (3) Positive and Negative Mat with Cubes.

When referring to integers, be sure to emphasize that numbers without a negative symbol (-) are assumed positive. So:

7 is "positive seven" or "seven."
-7 is "negative seven."
Be sure to use the negative symbol (-), instead of a minus sign (-), for representing negative numbers.

Emphasize zero pairs when teaching integers. A zero pair is a pair of numbers with a sum of 0 . So, $-7+7=0$.

C. Routines and Examples

(1) Integers with a Number Line

Routine

Materials:

- Module 17 Problem Sets
- Module 17 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like a number line

ROUTINE WITH NUMBER LINE

Teacher	Let's show different integers. An integer is a positive or negative whole number. What's an integer?
Students	A positive or negative whole number. Teacher Let's think about a positive number. How do you know a number is positive?
Students	It has a positive sign or it doesn't have any sign in front of the number. We know a number is positive if the positive sign is directly in front of a number. The positive sign is a smaller plus sign. (Draw +.) We assume a number is positive if there is not a negative sign directly in front
of a number. When do we assume a number is positive?	

Teacher	Yes. This is "negative two." What's this number? (Write-14.)
Students	Negative fourteen.
Teacher	This number is negative fourteen. (Show number line.)
Teacher	Today, let's show different integers on a number line. What's this number?
Students	
Teacher	If the number is positive, we will start at zero and move forward or right on the number line. What do we do if a number is positive?
Students	Start at zero and move forward on the number line.
Teacher	If the number is negative, we will start at zero and move backward or left on the number line. What do we do if a number is negative?
Students	Start at zero and move backward on the number line.
Teacher	Let's show \qquad on the number line. First, is \qquad a positive number or negative number?
Students	
Teacher	_ is a positive/negative number. So, let's place our finger on zero. Where?
Students	Zero.
Teacher	Because this number is positive/negative, we move forward/backward spaces on the number line. Ready? Count with me.
Students	-', -_, ${ }^{\text {c, }}$
Teacher	So, our finger shows where \qquad falls on the number line. What number did we show?
Students	
Teacher	Great work! Using this number line helps you understand the value of positive and negative integers. How can you use the number line to show integers?
Students	Start at zero. If the number is positive, move forward on the number line. If the number is negative, move backward on the number line.

Example

EXAMPLE WITH NUMBER LINE

\longleftrightarrow																			
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9

Teacher Let's show different integers. An integer is a positive or negative whole number. What's an integer?
Students A positive or negative whole number.
Teacher Let's think about a positive number. How do you know a number is positive?
$\left.\begin{array}{ll}\text { Students } & \begin{array}{l}\text { It has a positive sign or it doesn't have any sign in front of the number. } \\ \text { We know a number is positive if the positive sign is directly in front of a } \\ \text { number. The positive sign is a smaller plus sign. }\end{array} \\ \text { (Draw +.) } \\ \text { We assume a number is positive if there is not a negative sign directly in front } \\ \text { of a number. When do we assume a number is positive? }\end{array}\right\}$

(2) Integers with Two-Color Counters

Routine

Materials:

- Module 17 Problem Sets
- Module 17 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like two-color counters or multi-colored cubes

ROUTINE WITH TWO-COLOR COUNTERS

Teacher

Students
Teacher
Students
Teacher

Teacher We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
Students When there is not a negative sign directly in front of the number.
Teacher
Students
Teacher

Teacher So, let's read a few different numbers. What's this number? (Write 3.)
Students
Three or positive three.
Teacher This is three or positive three. What's this number?
(Write -9.)
Students
Negative nine.
Teacher
Is this number "nine?"
Students No!
Teacher What's this number?
Students Negative nine.
Teacher Yes. This is "negative nine." What's this number?
(Write -13.)
Let's show different integers. An integer is a positive or negative whole number. What's an integer?
A positive or negative whole number.
Let's think about a positive number. How do you know a number is positive?
It has a positive sign or it doesn't have any sign in front of the number.
We know a number is positive if the positive sign is directly in front of a number. The positive sign is a smaller plus sign.
(Draw +.)

How do you know a number is negative?
It has a negative sign.
We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign.
(Draw -.)
(Write 3.)
\qquad

Students Negative thirteen.
Teacher This number is negative thirteen.
(Show counters.)
Teacher Today, let's show different integers with two-color counters. With the twocolor counters, we'll use the yellow side to show positive integers. What will the yellow side represent?
Students Positive integers.
Teacher

Students
Teacher
Students
Teacher

Students Teacher Students Teacher

Students
Teacher
Students
Teacher

Students

Example

Teacher

Students
Teacher Students

We'll use the red side to show negative integers. What will the red side represent?
Negative integers.
Let's show a number. What's this number?
\qquad
Let's show \qquad with the two-color counters. First, is \qquad a positive number or negative number?
—. is a positive/negative number. So, which color will we use?
Yellow/red.
Because this number is positive/negative, we'll use the yellow/red side. We need to show __, so let's show __ yellow/red counters. Count with me. —, —, ——, ... So, we showed __. What number did we show?
\qquad
Great work! Using the two-color counters helps you show positive and negative integers. How can you use the two-color counters to show integers? The yellow side represents positive integers. The red side represents negative integers. To show a positive integer, show the yellow counters. To show a negative integer, show the red counters.

EXAMPLE WITH TWO-COLOR COUNTERS

Let's show different integers. An integer is a positive or negative whole number. What's an integer?
A positive or negative whole number.
Let's think about a positive number. How do you know a number is positive? It has a positive sign or it doesn't have any sign in front of the number.
$\left.\begin{array}{ll}\text { Teacher } & \begin{array}{l}\text { We know a number is positive if the positive sign is directly in front of a } \\ \text { number. The positive sign is a smaller plus sign. } \\ \text { (Draw +.) }\end{array} \\ \text { Teacher }\end{array} \quad \begin{array}{l}\text { We assume a number is positive if there is not a negative sign directly in } \\ \text { front of a number. When do we assume a number is positive? }\end{array}\right\}$

(3) Integers with Positive and Negative Mat

Routine

Materials:

- Module 17 Problem Sets
- Module 17 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like cubes or paperclips

ROUTINE WITH POSITIVE AND NEGATIVE MAT

Teacher Let's show different integers. An integer is a positive or negative whole number. What's an integer?
Students A positive or negative whole number.

Teacher
Students
Teacher

Teacher

Students
Teacher
Students
Teacher

Teacher So, let's read a few different numbers. What's this number? (Write 7.)
Seven or positive seven.
Students
This is seven or positive seven. What's this number?
(Write -1.)
Students
Negative one.
Teacher Is this number "one?"
Students No!
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Teacher } \\
\text { Students }\end{array} & \begin{array}{l}\text { What's this number? } \\
\text { Negative one. } \\
\text { Yes. This is "negative one." What's this number? } \\
\text { (Write -24.) }\end{array} \\
\text { Students } & \begin{array}{l}\text { Negative twenty-four. } \\
\text { This number is negative twenty-four. } \\
\text { (Show mat and cubes.) }\end{array}
$$

Teacher

Teday, let's show different integers with this positive and negative mat and

these cubes. With the mat, we'll place positive integers on this positive side

(point). Where will we place positive integers?\end{array}\right]\)| Positive side of mat. |
| :--- |

Teacher	Let's show different integers. An integer is a positive or negative whole number. What's an integer?		
Students	A positive or negative whole number.		
Teacher			
Let's think about a positive number. How do you know a number is positive?		\quad	It has a positive sign or it doesn't have any sign in front of the number.
:---			
Teacher			
We know a number is positive if the positive sign is directly in front of a			
number. The positive sign is a smaller plus sign.			
(Draw +.)			
We assume a number is positive if there is not a negative sign directly in			
front of a number. When do we assume a number is positive?			

EXAMPLE WITH POSITIVE AND NEGATIVE MAT

Students	Negative.
Teacher	Because this number is negative, we'll place the cubes on the negative side. We need to show -6 , so let's show 6 cubes on the negative side of the mat. Count with me.
Students	1, 2, 3, 4, 5, 6.
Teacher	So, we showed -6. What number did we show?
Students	-6_.
Teacher	Excellent! Using the positive and negative mat helps you show positive and negative integers. How can you use the mat to show integers?
Students	You use the cubes and place positive integers on the positive side of the mat. You use the cubes and place negative integers on the negative side of the mat.

D. Problems for Use During Instruction

See Module 17 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 17 Vocabulary Cards.

Developed by:

Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 17: Integers

Problem Sets

A. Positive integers (30)
B. Negative integers (30)

$$
3
$$

$$
26
$$

$$
10
$$

$$
4
$$

$$
14
$$

$$
24
$$

$$
9
$$

$$
15
$$

$$
2
$$

$$
13
$$

$$
17
$$

$$
5
$$

$$
19
$$

$$
16
$$

$$
12
$$

$$
29
$$

$$
20
$$

$$
1
$$

$$
18
$$

$$
27
$$

$$
25
$$

$$
6
$$

$$
22
$$

$$
28
$$

$$
23
$$

$$
8
$$

$$
0
$$

$$
21
$$

$$
7
$$

$$
-5
$$

$$
-8
$$

$$
-25
$$

$$
-14
$$

$$
-11
$$

$$
-19
$$

$$
-16
$$

-21
-6

$$
-2
$$

$$
-13
$$

$$
-23
$$

$$
-20
$$

-9
-26

-17

$$
-27
$$

$$
-15
$$

-30

$$
-10
$$

$$
-28
$$

-3
-29

$$
-24
$$

$$
-12
$$

$$
-22
$$

-18

$$
-4
$$

Module 17: Integers

Vocabulary Cards

absolute value integer
negative number
number line
opposites
positive number zero pair

absolute value

The distance of a number from 0 on a number line.

integer

A positive or negative whole number.

$$
\begin{array}{llllll}
-3 & -2 & -1 & 1 & 2 & 3
\end{array}
$$

negative number

Any number less than 0.

$$
\begin{array}{lll}
-3 & -2 & -1
\end{array}
$$

number line

A straight line with numbers placed at equal intervals along its length.

opposites

Two numbers that are equal distance from 0 on a number line.
-8 and 8 are opposites

positive number

Any number greater than 0.
1
2
3

zero pair

A pair of numbers with a sum of 0 .

$$
-7+7=\mathbf{0}
$$

