

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 18
 Addition and Subtraction of Integers

Module 18: Addition and Subtraction of Integers Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
absolute value	The distance of a number from 0 on a number line.
addend	Any numbers added together.
difference	The result of subtracting one number from another number.
integer	A positive or negative whole number.
minuend	The number from which another number is subtracted.
negative number	Any number less than 0.
number line	A straight line with numbers placed at equal intervals along its length.
opposites	Two numbers that are equal distance from 0 on a number line.
positive number	Any number greater than 0.
subtrahend	The number to be subtracted.
sum	The result of adding two or more numbers or the total number when you combine sets.
zero pair	A pair of numbers with a sum of 0.

B. Background Information

In this module, we focus on addition and subtraction of integers. An integer is a positive or negative whole number. We use the following different models to help students understand addition and subtraction of integers:
(1) Addition with a Number Line
(2) Subtraction with a Number Line
(3) Addition with Two-Color Counters
(4) Subtraction with Two-Color Counters
(5) Addition with a Positive and Negative Mat with Cubes
(6) Subtraction with a Positive and Negative Mat with Cubes

When referring to integers, be sure to emphasize that numbers without a negative symbol (-) are assumed positive. So:

7 is "positive seven" or "seven."
-7 is "negative seven."

Be sure to use the negative symbol (-), instead of a minus sign (-), for representing negative numbers.

Emphasize zero pairs when teaching integers. A zero pair is a pair of numbers with a sum of 0 . So, $-7+7=0$.

C. Routines and Examples

(1) Addition with a Number Line

Routine

Materials:

- Module 18 Problem Sets
- Module 18 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A number line and a manipulative with a face (e.g., duck or dinosaur)

ROUTINE WITH NUMBER LINE

Teacher Let's add integers. An integer is a positive or negative whole number. What's an integer?
Students A positive or negative whole number.
Teacher Let's think about a positive number. How do you know a number is positive?
Students It has a positive sign or it doesn't have a sign in front of the number.
Teacher We know a number is positive if the positive sign is directly in front of a
number. The positive sign is a smaller plus sign.
(Draw +.)
Teacher We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
Students When there is not a negative sign directly in front of the number.
Teacher How do you know a number is negative?
Students It has a negative sign.
Teacher We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign.
(Draw -.)
Teacher Let's work on adding with this number line.
(Show number line.)
(Show problem.)

Students
Teacher
Students Teacher

Teacher
Students Teacher

Students

Teacher

Students
Teacher
Students
Teacher

Students
Teacher
Students
Teacher

Students

Teacher What numbers are we adding?
\qquad plus \qquad _.
So, let's start at the first addend. What's the first addend?
\qquad -.
Let's place the duck on the number line at the first addend. When adding, we'll place duck so it is facing the increasing numbers on the number line. (Place duck on first addend. Make sure duck is facing increasing number on number line.)
Now, let's add. What number do we add?
\qquad -.

If the second addend is positive, we move forward on the number line. What do we do if the second addend is positive?
Move forward on the number line.
If the second addend is negative, we move backward on the number line. What do we do if the second addend is negative?
Move backward on the number line.
So, which direction should we move?
Forward/backward.
Because the second addend is positive/negative, we move forward/backward _ _ spaces. Let's do that together. Count with me.
\qquad
So, our duck shows the sum. What's _ plus __?
\qquad
Yes \qquad plus __ equals \qquad . Using this number line helps you understand what it means to add integers. How can you use the number line to add integers? Start at the first addend. If the second addend is positive, move forward on the number line. If the second addend is negative, move backward on the number line.

Example

```
-3+5
```

EXAMPLE WITH NUMBER LINE

\longleftrightarrow																				
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10

Teacher

Students
Teacher
Students

Let's add integers. An integer is a positive or negative whole number. What's an integer?
A positive or negative whole number.
Let's think about a positive number. How do you know a number is positive? It has a positive sign or it doesn't have a sign in front of the number.

Teacher	We know a number is positive if the positive sign is directly in front of a number. The positive sign is a smaller plus sign. (Draw +.)
We assume a number is positive if there is not a negative sign directly in front	
of a number. When do we assume a number is positive?	

(2) Subtraction with a Number Line

Routine

Materials:

- Module 18 Problem Sets
- Module 18 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A number line and a manipulative with a face (e.g., duck or dinosaur)

ROUTINE WITH NUMBER LINE

Teacher Let's subtract integers. An integer is a positive or negative whole number. What's an integer?
Students A positive or negative whole number.
Teacher Let's think about a positive number. How do you know a number is positive?
Students It has a positive sign or it doesn't have a sign in front of the number.

Teacher

Teacher

Students When there is not a negative sign directly in front of the number.
Teacher
Students
Teacher

Teacher Let's work on subtracting with this number line.
(Show number line.)
(Show problem.)
Teacher
Students
Teacher
Students
Teacher

Teacher
Students
We know a number is positive if the positive sign is directly in front of a number. The positive sign is a smaller plus sign.
(Draw +.)
We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?

How do you know a number is negative?
It has a negative sign.
We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign.
(Draw -.)

What numbers are we subtracting?
\qquad minus \qquad _.

So, let's start at the minuend. What's the minuend?
\qquad -
Let's place the duck on the number line at the minuend. When subtracting, we'll place the duck so it is facing the decreasing numbers on the number line.
(Place duck on minuend. Place duck facing the decreasing numbers on the number line.)
Now, let's subtract. What number do we subtract? What's the subtrahend?
\qquad -.

Teacher	If the subtrahend is positive, we move the duck forward on the number line from where the duck is facing. What do we do if the subtrahend is positive?
Students	Move forward on the number line from where the duck is facing.
Teacher	If the subtrahend is negative, we move backward on the number line from where the duck is facing. What do we do if the subtrahend is negative?
Students	Move backward on the number line from where the duck is facing.
Teacher	So, which direction should we move?
Students	Forward/backward.
Teacher	Because the subtrahend is positive/negative, we move forward/backward spaces. Let's do that together. Count with me.
Students	_, __ __, ...
Teacher	So, our duck shows the difference. What's _ minus __?
Students	
Teacher	Yes. \qquad minus \qquad equals \qquad . Using this number line helps you understand what it means to subtract integers. How can you use the number line to subtract integers?
Students	Start at the minuend with the duck facing the decreasing numbers on the number line. If the subtrahend is positive, move the duck forward from its position. If the subtrahend is negative, move the duck backward from its position.

Example

EXAMPLE WITH NUMBER LINE

Teacher Let's subtract integers. An integer is a positive or negative whole number. What's an integer?

Students
Teacher
Students
Teacher

Teacher We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
Students When there is not a negative sign directly in front of the number.
Teacher How do you know a number is negative?
Students It has a negative sign.
A positive or negative whole number.

Teacher	We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign. (Draw -.) Let's work on subtracting with this number line. (Show number line.) (Show problem.)
Teacher	

(3) Addition with Two-Color Counters

Routine

Materials:

- Module 18 Problem Sets
- Module 18 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like two-color counters or multi-colored cubes

ROUTINE WITH TWO-COLOR COUNTERS

Teacher

Students
Teacher
Students
Teacher

Teacher We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
Students When there is not a negative sign directly in front of the number.
Teacher
Students
Teacher

Teacher Let's work on adding with these two-color counters.
(Show counters.)
Teacher With the two-color counters, the yellow side will represent positive integers. What does the yellow side represent?
Students Positive.
Teacher And the red side will represent negative integers. What does the red side represent?
Students Negative.
(Show problem.)
Teacher What numbers are we adding?
Students \qquad plus \qquad _.
Teacher
Let's add integers. An integer is a positive or negative whole number. What's an integer?
A positive or negative whole number.
Let's think about a positive number. How do you know a number is positive?
It has a positive sign or it doesn't have a sign in front of the number.
We know a number is positive if the positive sign is directly in front of a number. The positive sign is a smaller plus sign.
(Draw +.)

How do you know a number is negative?
It has a negative sign.
We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign.
(Draw -.)

So, let's start at the first addend. What's the first addend?

Students

Students

Teacher

Teacher
Students Teacher

Students
Teacher
Teacher Let's add the counters of the second addend to the counters of the first addend.
(Add all counters together.)
Teacher Are the counters all the same color?
Students OPTION 1: Yes!
OPTION 2: No!
Teacher OPTION 2: When we have a mix of yellow and red counters, we'll make zero pairs until we only have all positive counters or all negative counters. What we will make? Zero pairs.
A zero pair is when you add a positive number and its opposite. The sum is zero. What's a zero pair? When you add a positive number and its opposite. The sum is zero.
So, positive 1 and negative 1 equals 0 . What's +1 and -1 ?
0.

Let's make zero pairs. I see a positive and a negative (place counters side-by-side). What did we create?
A zero pair.
We made a zero pair. We can remove this pair from our workspace.
(Remove zero pair.)
Can we make another zero pair?
(Continue removing zero pairs until there are no more zero pairs.)
Are the counters all the same color?
Yes!
All of the counters are the same color. How many counters?
Students
Teacher
Students
Let's show the first addend with the two-color counters. How do we show _ (first addend)?
Show y yellow/red counters.
Yes, we'll show __ yellow/red counters.
(Show counters.)
Now, let's add. What number do we add?

Let's add the second addend to the first. How do we show _ (second addend)?
Show \qquad yellow/red counters.
Yes, we'll show _ yellow/red counters. (Show counters.)

Students
Teacher

Students

Teacher
Students
Teacher
Students
Teacher

Teacher
Students
Teacher
s
\qquad
-
So, what's \qquad plus \qquad
\qquad

Teacher
Students
Teacher

Students
\qquad plus \qquad equals \qquad . Let's say that together.
\qquad plus \qquad equals \qquad .
Nice job! Using the two-color counters helps you add integers. How can you use the two-color counters to add integers?
You show the first addend. Then, you add the second addend. You create zero pairs until all the counters are positive or negative. The sum is the remaining counters.

Example

$2+-8$

Teacher

Students
Teacher
Students
Teacher

Teacher We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
Students When there is not a negative sign directly in front of the number.
Teacher How do you know a number is negative?
Students It has a negative sign.
Teacher We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign.
(Draw -.)
Teacher Let's work on adding with these two-color counters.
(Show counters.)
Teacher With the two-color counters, the yellow side will represent positive integers. What does the yellow side represent?
Students Positive.
Teacher And the red side will represent negative integers. What does the red side represent?
Students Negative.
(Show problem.)

Teacher	What numbers are we adding?
Students	2 plus -8.
Teacher	So, let's start at the first addend. What's the first addend?
Students	2
Teacher	Let's show the first addend with the two-color counters. How do we show 2?
Students	Show 2 yellow counters.
Teacher	Yes, we'll show 2 yellow counters. (Show counters.)
Teacher	Now, let's add. What number do we add?
Students	-8.
Teacher	How do we show -8?
Students	Show 8 red counters.
Teacher	Yes, we'll show 8 red counters. (Show counters.)
Teacher	Let's add the counters of the second addend to the counters of the first addend. (Add all counters together.)
Teacher	Are the counters all the same color?
Students	No!
Teacher	When we have a mix of yellow and red counters, we'll make zero pairs until we only have all positive counters or all negative counters. What we will make?
Students	Zero pairs.
Teacher	A zero pair is when you add a positive number and its opposite. The sum is zero. What's a zero pair?
Students	When you add a positive number and its opposite. The sum is zero.
Teacher	So, positive 1 and negative 1 equals 0 . What's +1 and -1?
Students	0.
Teacher	Let's make zero pairs. I see a positive and a negative (place counters side-byside). What did we create?
Students	A zero pair.
Teacher	We made a zero pair. We can remove this pair from our workspace. (Remove zero pair.)
Teacher	Can we make another zero pair?
Students	Yes!
Teacher	We can make another zero pair. We can remove this pair from our workspace. (Remove zero pair.)
Teacher	Can we make another zero pair?
Students	No.
Teacher	All of the counters are the same color. How many counters?
Students	-6.
Teacher	So, what's 2 plus -8?
Students	-6.

Teacher $\quad 2$ plus -8 equals -6 . Let's say that together.
Students 2 plus -8 equals -6 .
Teacher Nice job! Using the two-color counters helps you add integers. How can you use the two-color counters to add integers?
Students You show the first addend. Then, you add the second addend. You create zero pairs until all the counters are positive or negative. The sum is the remaining counters.

(4) Subtraction with Two-Color Counters

Routine

Materials:

- Module 18 Problem Sets
- Module 18 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like two-color counters or multi-colored cubes

ROUTINE WITH TWO-COLOR COUNTERS

Teacher

Students A positive or negative whole number.
Teacher
Students Teacher

Teacher We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
Students When there is not a negative sign directly in front of the number.
Teacher How do you know a number is negative?
Students It has a negative sign.
Teacher

Teacher Let's work on subtracting with these two-color counters.
(Show counters.)
Teacher With the two-color counters, the yellow side will represent positive integers. What does the yellow side represent?
Students Positive.
Teacher And the red side will represent negative integers. What does the red side represent?
Students Negative.
(Show problem.)
Teacher What numbers are we subtracting?
Students \qquad minus \qquad _.
Teacher
So, let's start with the minuend. What's the minuend?

Students

Teacher

Students Teacher

Teacher
Students

Students
Teacher

Students
Teacher

Students
Teacher
Students
Teacher

Students Teacher

Teacher

Students

Teacher

Teacher

Teacher Students
-.
Let's show the minuend with the two-color counters. How do we show (minuend)?
Show __ yellow/red counters.
Yes, we'll show _ yellow/red counters.
(Show counters.)
Now, let's subtract. What's the subtrahend?
-
We need to subtract __ (subtrahend). Look at the minuend. Do we have positive/negative counters to subtract or take away _ (subtrahend) counters?
OPTION 1: Yes!
OPTION 2: No!
OPTION 2: We don't have enough positive/negative counters to subtract the minuend. We can make zero pairs until we have enough counters to subtract the _ (subtrahend) counters. What we will make? Zero pairs.
A zero pair is when you add a positive number and its opposite. The sum is zero. What's a zero pair?
When you add a positive number and its opposite. The sum is zero.
So, positive 1 and negative 1 equals 0 . What's +1 and -1 ? 0 .
Let's make zero pairs for our workspace. Let's add one zero pair. What did we create?
A zero pair.
We made a zero pair. Let's bring that zero pair to the workspace.
(Add zero pair.)
Look at the counters. Do we have enough \qquad (positive/negative) counters to subtract __ (subtrahend) counters? Yes/no.
We keep making zero pairs until we have enough positive/negative counters to subtract __ (subtrahend) counters.
(Continue making zero pairs until there are enough positive/negative counters to subtract.)
Now, let's subtract the subtrahend. That means we'll subtract or take away _ counters.
(Subtract.)
How many counters?
\qquad

Teacher
Students
Teacher
Students Teacher

Students

So, what's \qquad minus \qquad ?
\qquad . minus \qquad equals __. Let's say that together. _minus \qquad equals \qquad .
Nice job! Using the two-color counters helps you subtract integers. How can you use the two-color counters to subtract integers?
You show the minuend. Then, you subtract the subtrahend. If you don't have enough minuend counters to subtract, you can bring in zero pairs. Then, you subtract. The difference is the remaining counters.

EXAMPLE WITH TWO-COLOR COUNTERS

Teacher Let's subtract integers. An integer is a positive or negative whole number. What's an integer?
Students A positive or negative whole number.
Teacher
Students
Teacher

Teacher

Students Let's think about a positive number. How do you know a number is positive? It has a positive sign or it doesn't have a sign in front of the number.
We know a number is positive if the positive sign is directly in front of a number. The positive sign is a smaller plus sign.
(Draw +.)
We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?

Teacher
Students
Teacher

Teacher Let's work on subtracting with these two-color counters. (Show counters.)
Teacher With the two-color counters, the yellow side will represent positive integers. What does the yellow side represent?
Students Positive.
Teacher And the red side will represent negative integers. What does the red side represent?

Students Negative.
(Show problem.)
Teacher What numbers are we subtracting?
Students $\quad-1$ minus -4 .
Teacher
Students
Teacher
Students
Teacher Yes, we'll show 1 red counter.
(Show counter.)
Teacher Now, let's subtract. What's the subtrahend?
Students -4.
Teacher We need to subtract -4 or 4 red counters. Look at the minuend. Do we have enough negative counters to subtract or take away 4 counters?
Students
No!
Teacher

Students
Teacher

Students
Teacher
Students

Teacher

Students

Teacher

Teacher Look at the counters. Now we have 2 negative counters. Do we have enough negative counters to subtract 4 counters?
No.
Teacher Let's add another zero pair. What did we create?
Students A zero pair.
Teacher We made a zero pair. Let's bring that zero pair to the workspace.
(Add zero pair.)
Teacher Look at the counters. Now we have 3 negative counters. Do we have enough negative counters to subtract 4 counters?
No.
Teacher Let's add another zero pair. What did we create?
Students A zero pair.
Teacher We made a zero pair. Let's bring that zero pair to the workspace.
(Add zero pair.)

Teacher	Look at the counters. Now we have 4 negative counters. Do we have enough negative counters to subtract 4 counters? Yes!
Students	
Teacher	Now, let's subtract the subtrahend. That means we'll subtract or take away 4 red counters. (Subtract.)
Teacher	How many counters do we have now?
Students	3.

(5) Addition with Positive and Negative Mat with Cubes

Routine

Materials:

- Module 18 Problem Sets
- Module 18 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like cubes or paperclips

ROUTINE WITH POSITIVE AND NEGATIVE MAT

Teacher Let's add integers. An integer is a positive or negative whole number. What's an integer?
Students A positive or negative whole number.

Teacher
Students
Teacher

Teacher	We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
Students	When there is not a negative sign directly in front of the number. Teacher How do you know a number is negative?
Students	It has a negative sign. Teacher
	We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign. (Draw -.) Let's work on adding with this positive and negative mat and these cubes. (Show mat and cubes.)
Teacher	With the mat, we'll place positive integers on the positive side. Where will we place positive integers?
Students \quadPositive side. And we'll place negative integers on the negative side. Where will we place negative integers?	
Students \quadNegative side.	

Let's think about a positive number. How do you know a number is positive? It has a positive sign or it doesn't have a sign in front of the number. We know a number is positive if the positive sign is directly in front of a number. The positive sign is a smaller plus sign.
(Draw +.)
We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
Students
How do you know a number is negative?
It has a negative sign.
We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign.
(Draw -.)
Teacher Let's work on adding with this positive and negative mat and these cubes. (Show mat and cubes.)
Teacher With the mat, we'll place positive integers on the positive side. Where will we place positive integers?
Students Positive side.
Teacher And we'll place negative integers on the negative side. Where will we place negative integers?
Students Negative side.
(Show problem.)
Teacher What numbers are we adding?
Students
Teacher Students Teacher

Students
\qquad plus \qquad .
So, let's start at the first addend. What's the first addend?
\qquad
-.
Let's show the first addend with the cubes. How do we show __ (first addend)?

Teacher

Teacher
Students
Teacher
Students
Show \qquad cubes on the positive/negative side.
Yes, we'll show \qquad cubes on the positive/negative side of the mat. (Show cubes.)
Now, let's add. What number do we add?
\qquad
Let's add the second addend to the first. How do we show _ (second addend)?

Teacher
Teacher
Students

Teacher

Students
Teacher

Students

Teacher
Students
Teacher

Students Teacher

Teacher

Teacher Students Teacher Students Teacher
\qquad
\qquad cubes on the positive/negative side.
Yes, we'll show \qquad cubes on the positive/negative side of the mat. (Show cubes.)
Are the cubes on the same side of the mat?
OPTION 1: Yes!
OPTION 2: No!
OPTION 2: When we have cubes on the positive side and negative side, we'll make zero pairs until we only have all positive cubes or all negative cubes. What we will make? Zero pairs.
A zero pair is when you add a positive number and its opposite. The sum is zero. What's a zero pair? When you add a positive number and its opposite. The sum is zero.
So, positive 1 and negative 1 equals 0 . What's +1 and -1 ? 0.

Let's make zero pairs. I see a positive and a negative (place cubes side-by-side). What did we create?
A zero pair.
We made a zero pair. We can remove this pair from our workspace.
(Remove zero pair.)
Can we make another zero pair?
(Continue removing zero pairs until there are no more zero pairs.)
All of the cubes are on the same side of the mat. How many cubes?
\qquad
So, what's \qquad plus \qquad
\qquad .
\qquad plus
\qquad equals \qquad . Let's say that together.

Students

Students

Example

 $2+(-7)$Teacher Let's add integers. An integer is a positive or negative whole number. What's an integer?
Students
Teacher
Students
Teacher

Teacher

Students
Teacher
Students
Teacher

Teacher Let's work on adding with this positive and negative mat and these cubes. (Show mat and cubes.)
Teacher With the mat, we'll place positive integers on the positive side. Where will we place positive integers?
Students Positive side.
EXAMPLE WITH POSITIVE AND NEGATIVE MAT

A positive or negative whole number.
Let's think about a positive number. How do you know a number is positive? It has a positive sign or it doesn't have a sign in front of the number.
We know a number is positive if the positive sign is directly in front of a number. The positive sign is a smaller plus sign.
(Draw +.)
We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
When there is not a negative sign directly in front of the number.
How do you know a number is negative?
It has a negative sign.
We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign.
(Draw -.)

Teacher	And we'll place negative integers on the negative side. Where will we place negative integers?
Students	Negative side. (Show problem.)
Teacher	What numbers are we adding?
Students	2 plus -7.
Teacher	So, let's start at the first addend. What's the first addend?
Students	2.
Teacher	Let's show the first addend with the cubes. How do we show 2?
Students	Show 2 cubes on the positive side.
Teacher	Yes, we'll show $\mathbf{2}$ cubes on the positive side of the mat. (Show cubes.)
Teacher	Now, let's add. What number do we add?
Students	-7.
Teacher	Let's add the second addend to the first. How do we show -7?
Students	Show 7 cubes on the negative side.
Teacher	Yes, we'll show $\mathbf{7}$ cubes on the negative side of the mat. (Show cubes.)
Teacher	Are the cubes on the same side of the mat?
Students	No!
Teacher	When we have cubes on both the positive side and negative side, we'll make zero pairs until we only have all positive cubes or all negative cubes. What we will make?
Students	Zero pairs.
Teacher	A zero pair is when you add a positive number and its opposite. The sum is zero. What's a zero pair?
Students	When you add a positive number and its opposite. The sum is zero.
Teacher	So, positive 1 and negative 1 equals 0 . What's +1 and -1 ?
Students	0.
Teacher	Let's make zero pairs. I see a positive and a negative (place cubes side-byside). What did we create?
Students	A zero pair.
Teacher	We made a zero pair. We can remove this pair from our workspace. (Remove zero pair.)
Teacher	Can we make another zero pair?
Students	Yes!
Teacher	Let's make another zero pair. I see a positive and a negative (place cubes side-by-side). What did we create?
Students	A zero pair.
Teacher	We made a zero pair. We can remove this pair from our workspace. (Remove zero pair.)
Teacher	Can we make another zero pair?
Students	No!
Teacher	All of the cubes are on the same side of the mat. How many cubes?

Students
Teacher
Students
Teacher
Students
Teacher Nice job! Using the mat and cubes helps you add integers. How can you use the mat and cubes to add integers?
Students You show the first addend. Then, you add the second addend. You create zero pairs until all the cubes are positive or negative. The sum is the remaining cubes.
-5.
So, what's 2 plus - $\mathbf{7}$?
-5.
2 plus -7 equals -5 . Let's say that together.
2 plus -7 equals -5.

(6) Subtraction with Positive and Negative Mat with Cubes

Routine

Materials:

- Module 18 Problem Sets
- Module 18 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like cubes or paperclips

Teacher Let's subtract integers. An integer is a positive or negative whole number. What's an integer?
Students A positive or negative whole number.

Teacher
Students
Teacher

Teache

Students
Teacher
Students
Teacher

Teacher Let's work on subtracting with this positive and negative mat and these cubes.
(Show mat and cubes.)
Teacher With the mat, we'll place positive integers on the positive side. Where will we place positive integers?
Students Positive side.
Teacher
Let's think about a positive number. How do you know a number is positive? It has a positive sign or it doesn't have a sign in front of the number.
We know a number is positive if the positive sign is directly in front of a number. The positive sign is a smaller plus sign.
(Draw +.)
We assume a number is positive if there is not a negative sign directly in front of a number. When do we assume a number is positive?
When there is not a negative sign directly in front of the number
How do you know a number is negative?
It has a negative sign.
We know a number is negative if there is a negative sign directly in front of a number. The negative sign is a smaller minus sign.
(Draw -.)

And we'll place negative integers on the negative side. Where will we place negative integers?

Students Negative side.
(Show problem.)
Teacher What numbers are we subtracting?
Students
Teacher
Students
Teacher
Students
Teacher
Teacher
Students
Teacher
Students
Teacher
Students

Teacher

Students
Teacher
Students

Teacher
Students
Teacher
Students
Teacher

Teacher
Students
Teacher

Teacher Now, let's subtract the subtrahend. That means we'll subtract or take away
\qquad cubes.
(Subtract.)

Teacher	Let's work on subtracting with this positive and negative mat and these cubes. (Show mat and cubes.)
Teacher	With the mat, we'll place positive integers on the positive side. Where will we place positive integers?
Students	Positive side.
Teacher	And we'll place negative integers on the negative side. Where will we place negative integers?
Students	Negative side. (Show problem.)
Teacher	What numbers are we subtracting?
Students	1 minus -3.
Teacher	So, let's start at the minuend. What's the minuend?
Students	1.
Teacher	Let's show the minuend with the cubes. How do we show 1?
Students	Show 1 cube on the positive side of the mat.
Teacher	Yes, we'll show 1 cube on the positive side of the mat. (Show cube.)
Teacher	Now, let's subtract. What's the subtrahend?
Students	-3.
Teacher	We need to subtract how many negative cubes?
Students	3.
Teacher	So, look at the mat. Do you have enough negative cubes to subtract 3 negative cubes?
Students	No.
Teacher	We don't have enough negative cubes to subtract the minuend. We can make zero pairs until we have enough cubes to subtract the 3 negative cubes. What we will make?
Students	Zero pairs.
Teacher	A zero pair is when you add a positive number and its opposite. The sum is zero. What's a zero pair?
Students	When you add a positive number and its opposite. The sum is zero.
Teacher	So, positive 1 and negative 1 equals 0 . What's +1 and -1 ?
Students	0.
Teacher	Let's make zero pairs for our workspace. Let's add one zero pair. What did we create?
Students	A zero pair.
Teacher	We made a zero pair. Let's bring that zero pair to the workspace. (Add zero pair.)
Teacher	Look at the cubes. Do we have enough negative cubes to subtract 3 cubes?
Students	No.
Teacher	Let's add another zero pair. What did we create?
Students	A zero pair.
Teacher	We made a zero pair. Let's bring that zero pair to the workspace.

	(Add zero pair.) Look at the cubes. Now we have $\mathbf{2}$ negative cubes. Do we have enough negative cubes to subtract $\mathbf{3}$ cubes?
Teacher	

D. Problems for Use During Instruction

See Module 18 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 18 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 18:
 Addition and Subtraction of Integers

Problem Sets

A. Positive integer plus negative integer (20)
B. Negative integer plus positive integer (20)
C. Negative integer plus negative integer (20)
D. Positive integer minus negative integer (20)
E. Negative integer minus positive integer (20)
F. Negative integer minus negative integer (20)

$$
6+(-4)
$$

$$
7+(-2)
$$

$$
5+(-10)
$$

$$
+(-5)
$$

A.

$$
6+(-3)
$$

$$
+(-8)
$$

A.

$$
4+(-2)
$$

$$
17+(-12)
$$

$$
5+(-5)
$$

$$
11+(-15)
$$

$$
8+(-4)
$$

$$
14+(-8)
$$

$$
12+(-3)
$$

$$
1+(-6)
$$

A.

$$
4+(-5)
$$

$+(-3)$

$$
0+(-9)
$$

B.

$$
(-1)+5
$$

$$
(-3)+6
$$

$$
(-4)+3
$$

$$
(-7)+8
$$

$$
(-8)+6
$$

$$
(-5)+4
$$

$$
(-6)+10
$$

$$
(-6)+3
$$

$$
(-10)+5
$$

$$
(-7)+8
$$

B.

$$
(-19)+13
$$

B.

$$
(-12)+3
$$

$$
(-14)+6
$$

B.

$$
(-11)+8
$$

$(-15)+4$

$$
(-5)+4
$$

$$
(-2)+0
$$

B.

$$
(-8)+1
$$

C.
$(-2)+(-3)$
C.
$(-6)+(-1)$
C.

$$
(-8)+(-4)
$$

C.
$(-9)+(-9)$
C.

$$
(-5)+(-7)
$$

C.

$$
(-4)+(-2)
$$

C.

$$
(-11)+(-6)
$$

C.

$$
(-3)+(-4)
$$

C.

$$
(-1)+(-10)
$$

C.

$$
(-7)+(-12)
$$

C.
$(-9)+(-1)$
C.

$$
(-8)+(-6)
$$

C.

$$
(-10)+(-9)
$$

C.
$(-2)+(-15)$
C.

$$
(-16)+(-3)
$$

C.

$$
(-7)+(-14)
$$

C.

$$
(-12)+(-4)
$$

C.

$$
(-13)+(-9)
$$

C.

$$
(-17)+(-4)
$$

C.

$$
(-16)+(-8)
$$

D.
$3-(-8)$
D.

D.

D.
$5-(-10)$
D.

D.

D.
$6-(-3)$
D.

D.

$$
4-(-2)
$$

D.

$$
17-(-12)
$$

D.

$$
5-(-5)
$$

D.

$$
11-(-15)
$$

D.
$8-(-4)$
D.

$$
14-(-8)
$$

D.

D.

D.

D.

$$
4-(-5)
$$

D.

D.
$0-(-9)$
E.

$$
(-1)-5
$$

E.

$$
(-3)-6
$$

E.

E.

$$
(-4)-3
$$

$$
(-7)-8
$$

$$
(-8)-6
$$

E.

$$
(-5)-4
$$

E.

$$
(-6)-10
$$

$$
(-6)-3
$$

E.
$(-10)-5$
E.

$$
(-7)-8
$$

E.
$(-19)-13$
E.
$(-12)-3$

$$
(-14)-6
$$

$$
(-11)-8
$$

$(-15)-4$

$$
(-6)-3
$$

E.

$$
(-8)-1
$$

$$
(-6)-(-1)
$$

$$
(-8)-(-4)
$$

$$
(-4)-(-2)
$$

$$
(-11)-(-6)
$$

$$
(-3)-(-4)
$$

$$
(-1)-(-10)
$$

$(-7)-(-12)$

$$
(-9)-(-1)
$$

$$
(-8)-(-6)
$$

$$
(-10)-(-9)
$$

$(-2)-(-15)$

$$
(-16)-(-3)
$$

$(-7)-(-14)$

$$
(-12)-(-4)
$$

$$
(-13)-(-9)
$$

$$
(-17)-(-4)
$$

$$
(-16)-(-8)
$$

Module 18:
 Addition and Subtraction of Integers

Vocabulary Cards

absolute value addend difference integer minuend
negative number
number line
opposites
positive number subtrahend
sum
zero pair

absolute value

The distance of a number from 0 on a number line.

addend

Any numbers added together.

$$
6+2=8
$$

6 and 2 are addends

difference

The result of subtracting one number from another number.

$$
6-4=2
$$

2 is the difference

integer

A positive or negative whole number.

2

minuend

The number from which another number is subtracted.

$$
9-4=5
$$

9 is the minuend

negative number

Any number less than 0.

$$
\begin{array}{lll}
-3 & -2 & -1
\end{array}
$$

number line

A straight line with numbers placed at equal intervals along its length.

opposites

Two numbers that are equal distance from 0 on a number line.
-8 and 8 are opposites

positive number

Any number greater than 0.

123

subtrahend

The number to be subtracted.

$$
9-4=5
$$

4 is the subtrahend

sum

The result of adding two or more numbers or the total number when you combine sets.

$$
7+2+1=10
$$

10 is the sum

zero pair

A pair of numbers with a sum of 0 .

$$
-7+7=0
$$

