

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 2

 Comparison

Module 2: Comparison Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
compare	To examine differences between numbers, quantities, or values to decide if one quantity is greater than, less than, or equal to another quantity.
denominator	The term in a fraction that tells the number of equal parts in a whole.
digit	A symbol used to show numbers.
equal	When the number, quantity, or value on the left side of the equal sign is the same as the number, quantity, or value on the right side of the equal sign.
equal sign	The symbol that tells you that two sides of an equation are the same, balanced, or equal.
equivalent	Two numbers that have the same value.
fraction	A number representing part of a whole or set. larger the number, quantity, or value on one side of the equal sign is equal sign.
greater than	The digit representing 100.
hundreds	When the number, quantity, or value on one side of the equal sign is smaller than the number, quantity, or value on the other side of the equal sign.
less than	A straight line with numbers placed at equal intervals along its length.
number line	The term in a fraction that tells how many parts in a fraction.
numerator	The digit representing 1.
ones	The value of a digit depending on its place in a number.
place value	Any number that can be written as a fraction.
rational number	The digit representing 10.
tens	The digit representing 1,000.
thousands	

B. Background Information

Comparison is important for students to understand numbers as greater, less, or equal.
Typically, students first learn to compare (1) whole numbers. Then, students learn to compare
(2) fractions and decimals. Decimals can be compared using the same strategy as comparing whole numbers, so we provide an overview of both in section (1).

When teaching about comparison, emphasize place value. Also, emphasize vocabulary related to comparison, such as greater than, less than, equal to, and equivalent, and the symbols representing this vocabulary.

Comparison		
$16>9$	$1.3<1.35$	$68=68$
greater than symbol	less than symbol	equal sign

C. Routines and Examples

(1) Comparing Whole Numbers and Decimals

Routine

Materials:

- Module 2 Problems
- Module 2 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- Any hands-on tool or manipulative (e.g., clips, Base-10 blocks)

Teacher Let's work on comparing numbers. Comparing means to determine whether a number is greater than, less than, or equal to another number. What does comparing mean?
Students To determine whether a number is greater than, less than, or equal to another number.
Teacher Today, we'll compare numbers with these Base-10 blocks. (Show Base-10 blocks.)
Teacher With Base-10 blocks, one cube represents one thousand. What does a cube represent?
Students One thousand.
Teacher The flat represents one hundred. What does the flat represent?
Students One hundred.
Teacher The rod represents one ten. What does the rod represent?

Students One ten.
Teacher
Students
And the unit represents one. What does the unit represent?
One.
Teacher Now, let's compare numbers. Let's compare __ and _ . What numbers are we going to compare?
Students and
\qquad .
Teacher And for this comparison, we want to determine if __ (first number) is greater than, less than, or equal to __ (second number). What do we want to do?
Students Determine if the first number is greater than, less than, or equal to the second number.
Teacher Now, let's compare numbers. Let's make the first number with the Base-10 blocks. How could I show __?
Students You could use __.
Teacher I'll show _ (first number) by showing __.
(Show using Base-10 blocks.)
Teacher Let's make the second number with Base-10 blocks. I'll place my blocks over here (on other side of workspace). How could I show __?
Students
You could use __.
Teacher I'll show __ (second number) by showing __. (Show using Base-10 blocks.)
Teacher Now, it's time to compare. Look at the greatest place value. What's the greatest place value?
Students
Teacher \qquad is the greatest place of
\qquad (first number) and __ (second number). Look at the first number, how many _ (greatest place value)?
Students \qquad
Look at the second number, how many \qquad (greatest place value)?
Teacher
Students
Teacher

Students
.
Are the (g (greatest place value) of the first number the same or different from __ (greatest place value) of the second number?
OPTION 1: The same!
OPTION 2: Different.
Teacher OPTION 1: When the greatest place value is the same, we look at the next greatest place value. I move one place value to the right. What's the next greatest place value?

Students
Teacher

Students
Teacher
Students
Teacher

Students
\qquad
That's right. The next greatest place value is the \qquad place. Look at the first number, how many __ (place value)?
-.
Look at the second number, how many __ (place value)? ..
Are the _ (place value) of the first number the same or different from __ (greatest place value) of the second number?
OPTION 1: The same!

OPTION 2: Different.

Teacher

Students Teacher

Students
Teacher
Students
Teacher

Students

Teacher

Students
Teacher

Students
Teacher

Students
Teacher

Students
Teacher

Students
Teacher

Teacher
Students

Teacher
Students

OPTION 1: When the place value is the same, we look at the next greatest place value. I move one place value to the right. What's the next greatest place value?
\qquad
That's right. The next greatest place value is the \qquad place. Look at the first number, how many __ (place value)?
\qquad
Look at the second number, how many \qquad (place value)?
-
Are the \qquad (place value) of the first number the same or different from __ (greatest place value) of the second number?
OPTION 1: The same!
OPTION 2: Different.
OPTION 2: The __ (place value) of the first number is different from the _ (place value) of the second number. If the digits are different, then we can compare. What can we do? Compare.
Is the __ (place value) of the first number greater than, less than, or equal to that of the second number?
-
If it's greater, that means _ (first number) is greater than __ (second number). If it's less, that means __ (first number) is less than __ (second number). If the numbers are the same, they are equal. What's the comparison?
__ (greater/less/equal).
That's right! _ (first number) is \qquad (greater than/less that/equal to) \qquad (second number). Let's say that together. __ is greater than/less that/equal to \qquad _.

Let's write the correct symbol. Should we write the greater than symbol, less than symbol, or equal sign?
\qquad
Let's write the symbol between the two numbers.
(Write.)
What does it mean to compare numbers?
We determine whether one number is greater than, less than, or equal to another number.
How did we compare numbers in this example?
We compared each digit by place value then determined whether one number was greater than, less than, or equal to the other number.

Example

$\left.\left.\begin{array}{ll}105.6 & 106.5\end{array}\right] \begin{array}{l}\text { Let's work on comparing numbers. Comparing means to determine whether a } \\ \text { number is greater than, less than, or equal to another number. What does } \\ \text { comparing mean? }\end{array}\right]$

Students 5 ones.
Teacher Look at the second number, how many ones?
Students 6 ones.
Teacher Are the ones of the first number the same or different compared to the ones of the second number?
Students Different.
Teacher The ones of the first number are different from the ones of the second number. If the digits are different, then we can compare. What can we do?
Students Compare.
Teacher Let's compare. Are the ones of the first number greater than, less than, or equal to that of the second number?
Students Less.
Teacher It's less so that means 105.6 is less than 106.5. What's the comparison?
Students Less than.
Teacher That's right! 105.6 is less than 106.5. Let's say that together.
Students 105.6 is less than 106.5.
Teacher Let's write the correct symbol. Should we write the greater than symbol, less than symbol, or equal sign?
Students Less than symbol.
Teacher Let's write the less than symbol between the two numbers. (Write.)
Teacher Let's read it together.
Students 105.6 is less than 106.5.
Teacher What does it mean to compare numbers?
Students To determine whether one number is greater than, less than, or equal to another number.

(2) Comparing Fractions*

*For clarity, read Example before using Routines.

Routine

Materials:

- Module 2 Problems
- Module 2 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- Any hands-on tool or manipulative (e.g., fraction tiles, geoboards)

Teacher	Let's work on comparing numbers. Comparing means to determine whether a number is greater than, less than, or equal to another number. What does comparing mean?
Students	To determine whether one number is greater than, less than, or equal to another number.
Teacher	Today, we'll compare numbers with these fraction tiles. (Show fraction tiles.)
Teacher	Now, let's compare numbers. Let's compare \qquad and \qquad . What numbers are we going to compare?
Stud	_ and
Teacher	And for this comparison, we want to determine if \qquad (first number) is greater than, less than, or equal to \qquad (second number). What do we want to do?
Students	Determine if the first number is greater than, less than, or equal to the second number.
Teacher	Now, let's compare numbers. Let's make the first number with the fraction tiles. How could I show \qquad ?
Students	You could use
Teacher	I'll show \qquad (first number) by showing \qquad . Remember, I want to show the fraction compared to the whole. (Show using fraction tiles.)
Teacher	Let's make the second number with fraction tiles. l'll place my fraction tiles over here (on other side of workspace). How could I show __?
Students	You could use
Teacher	I'll show \qquad (second number) by showing \qquad . Remember, I want to show the fraction compared to the whole. (Show using fraction tiles.)
Teacher	Now, it's time to compare. What are we going to do?
Students	Compare.
Teacher	Let's think about the value of each fraction compared to the whole. Let's place both fractions on top of the whole to compare.

(Place fractions compared to whole.)

Teacher Students Teacher

Students Teacher

Students

Teacher

Students
Teacher

Students
Teacher
Teacher
Students
Teacher

Students
Teacher

Students Teacher

Students
Teacher

Students
Teacher
Teacher
Students

Teacher

Look at the first number, is this fraction less than $\frac{1}{2}$ or greater than $\frac{1}{2}$?
\qquad _.

The first number is \qquad than $\frac{1}{2}$. Let's remember that. Look at the second number, is this fraction less than $\frac{1}{2}$ or greater than $\frac{1}{2}$?
\qquad
-.
The second number is __ than $\frac{1}{2}$. Let's remember that. Now, if one fraction is less than or equal to $\frac{1}{2}$ and the other fraction is greater than or equal to $\frac{1}{2}$, then it's easy to compare. Is one fraction less than $\frac{1}{2}$ and the other greater than $\frac{1}{2}$? OPTION 1: Yes. (Skip Option 2.) OPTION 2: No.
OPTION 2: If both fractions are less than $\frac{1}{2}$ or greater than $\frac{1}{2}$, then we have to look at the value of each fraction a little closer. Is one fraction greater in length or area than the other fraction?
Yes.
What do you notice about _ (first fraction) compared to __ (second fraction)?
\qquad
So, we can see that the value of the first fraction is different from the value of the second fraction.
It's time to compare. What should we do?
Compare.
Is the __ (first fraction) greater than, less than, or equal to that of the second fraction?

If it's greater, that means __ (first number) is greater than __ (second number). If it's less, that means __ (first number) is less than __ (second number). If the numbers are the same, they are equal. What's the comparison?
_ (greater than/less than/equal to).
That's right! _ (first number) is _ (greater than/less than/equal to) \qquad (second number). Let's say that together.
\qquad is greater/less/equal to \qquad .
Let's write the correct symbol. Should we write the greater than symbol, less than symbol, or equal sign?
\qquad
Let's write the symbol between the two numbers.
(Write.)
What does it mean to compare numbers?
To determine if one number is greater than, less than, or equal to another number.

Students We compared each fraction and then determined whether one number was greater than, less than, or equal to the other number.

Example

$\frac{7}{8}>\frac{3}{4}$

Teacher Let's work on comparing numbers. Comparing means to determine whether a number is greater than, less than, or equal to another number. What does comparing mean?
Students To determine whether a number is greater than, less than, or equal to another number.
Teacher Today, we'll compare numbers with this number line.
(Show number line.)
Teacher Before we place fractions on the number line, let's draw a number line. I'll mark this number line with $0, \frac{1}{2}$, and 1 . How will I mark the number line?
Students With $0, \frac{1}{2}$, and 1.
Teacher Now, let's compare numbers. Let's compare $\frac{7}{8}$ and $\frac{3}{4}$. What numbers are we going to compare?
Students $\frac{7}{8}$ and $\frac{3}{4}$.
Teacher And for this comparison, we want to determine if $\frac{7}{8}$ is greater than, less than, or equal to $\frac{3}{4}$. What do we want to do?
Students Determine if the first number is greater than, less than, or equal to the second number.
Teacher Now, let's compare numbers. Let's draw the first number on a number line. How could I show $\frac{7}{8}$?
You could make 8 equal parts and mark $\frac{7}{8}$ above the seventh one-eighth mark.
Teacher
I'll show $\frac{7}{8}$ by dividing the number line into 8 equal parts. Then, I'll write $\frac{7}{8}$ above the seventh equal part.
(Draw and write.)
Teacher Let's draw the second number on the same number line. How could I show $\frac{3}{4}$?

Students You could make 4 equal parts and mark $\frac{3}{4}$ above the third one-fourth mark.
Teacher
I'll show $\frac{3}{4}$ by dividing the number line into 4 equal parts. Then, l'll write $\frac{3}{4}$ above the third equal part.
(Draw and write.)
Teacher
Students
Now, it's time to compare. What are we going to do?

Teacher

Students Compare.
Let's think about the value of each fraction compared to the whole. Look at the first number, is $\frac{7}{8}$ less than $\frac{1}{2}$ or greater than $\frac{1}{2}$?

Teacher

Students Greater than.
The first number is greater than $\frac{1}{2}$. Let's remember that. Look at the second number, is $\frac{3}{4}$ less than $\frac{1}{2}$ or greater than $\frac{1}{2}$?

Teacher
Greater than.
The second number is greater than $\frac{1}{2}$. Let's remember that. Now, if one fraction is less than or equal to $\frac{1}{2}$ and the other fraction is greater than or equal to $\frac{1}{2}$, then it's easy to compare. Is one fraction less than $\frac{1}{2}$ and the other greater than $\frac{1}{2}$?
Students No.
Teacher If both fractions are less than $\frac{1}{2}$ or greater than $\frac{1}{2}$, then we have to look at the value of each fraction a little closer. Is one fraction greater in length or area than the other fraction?
Students Yes.
Teacher
What do you notice about $\frac{7}{8}$ compared to $\frac{3}{4}$?
Students
$\frac{7}{8}$ is greater in value or longer than $\frac{3}{4}$.
Teacher
Students So, is $\frac{7}{8}$ greater, less, or equal to that of $\frac{3}{4}$?

Teacher What's the comparison?
Students $\frac{7}{8}$ is greater than $\frac{3}{4}$.
Teacher That's right $\frac{7}{8}$ is greater than $\frac{3}{4}$. Let's say that together.
Students $\frac{7}{8}$ is greater than $\frac{3}{4}$.
Teacher Let's write the correct symbol. Should we write the greater than symbol, less than symbol, or equal sign?
Students Greater than.
Teacher Let's write the symbol between the two numbers. (Write.)
Teacher What does it mean to compare numbers?
Students To determine greater than, less than, or equal to.
Teacher How did we compare numbers in this example?

$$
8 \quad 4
$$

Greater.

Students We compared each fraction using a number line and then determined whether one number was greater than, less than, or equal to the other number.

D. Problems for Use During Instruction

See Module 2 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 2 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 2: Comparison

Problem Sets

A. $\geq,<,=$ for numbers less than $20(30)$
B. $\geq,<,=$ for numbers from 20-1,500 (30)
C. $\geq,<,=$ for fractions with like denominators (15)
D. $\geq,<,=$ for fractions with unlike denominators (15)
E. $\geq,<,=$ for decimals to thousandths (15)

18

14

18

14

B.

545

B.

344

B.

B.

633

B.

B.

$$
448
$$

$$
484
$$

B.

B.

B.

$$
45 \quad 45
$$

B.

346

B.

128

B.

$$
6598
$$

$$
45 \quad 24
$$

140
 $$
410
$$

B.

167
 16

B.

145
 45

C.

C.

C.

C.

D.

5.6

E.
 0.899
 0.889

104.5

150.4

3.67

3.59

E.
 0.657
 0.756

1.906

1.903

$$
76.5 \quad 79.8
$$

14.9

E.
 405.4

E.
 0.1450 .141

1.29

Module 2:
 Comparison

Vocabulary Cards

compare denominator digit equal equal sign equivalent fraction greater than hundreds
less than number line numerator ones
place value
rational number tens
thousands

compare

To examine differences between numbers, quantities, or values to decide if one quantity is greater than, less than, or equal to another quantity.
61
greater than
$37<80$
less than
$3=3$
equal to

denominator

The term in a fraction that tells the number of equal parts in a whole.

$$
2 / 3 \frac{2}{3} \quad \text { In these fractions, } 3 \text { is the denominator. }
$$

digit

A symbol used to show numbers.

0123456789

equal

When the number, quantity, or value on the left side of the equal sign is the same as the number, quantity, or value on the right side of the equal sign.

$$
3=3
$$

equal to

equal sign

The symbol that tells you that two sides of an equation are the same, balanced, or equal.
$12+8=20$
$=$ is the equal sign

equivalent

Two numbers that have the same value.

$$
\frac{1}{4}=\frac{2}{8} \quad \frac{2}{3}=\frac{8}{12}
$$

fraction

A number representing part of a whole or set.

$$
\frac{3}{6} \quad \frac{10}{12} \quad \frac{8}{3}
$$

greater than

When the number, quantity, or value on one side of the equal sign is larger than the number, quantity, or value on the other side of the equal sign.

$$
61>8
$$

hundreds

The digit representing 100.

less than

When the number, quantity, or value on one side of the equal sign is smaller than the number, quantity, or value on the other side of the equal sign.

$$
37<80
$$

less than

number line

A straight line with numbers placed at equal intervals along its length.

numerator

The term in a fraction that tells how many parts of a fraction.
$2 / 3 \frac{2}{3} \quad$ In these fractions, 2 is the numerator.

ones

The digit representing 1.

place value

The value of a digit depending on its place in a number.

thousands	hundreds	tens	ones	.	tenths	hundredths	thousandths
8	7	6	5	.	4	3	2

rational number

Any number that can be written as a fraction.

$$
\frac{3}{6} \quad \frac{10}{12} \quad \frac{8}{3}
$$

tens

The digit representing 10.

thousands

The digit representing 1,000.

