

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 20

Functions and Ordered Pairs

Module 20: Functions and Ordered Pairs Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
coordinate plane	A two-dimensional plane formed at the intersection of the x-axis and y-axis.
equation	A mathematical statement that two expressions are the same or equal; must have an equal sign.
expression	A combination of variables, numbers, and/or operations that represents a mathematical relationship; does not have an equal sign.
function	A relationship between two quantities in which every output corresponds to exactly one input.
function table	A table that displays a set of inputs and outputs in such a way that each input has a unique output.
input variable	The x of an equation; the information put in to find the output.
ordered pair	A pair of numbers used to locate a point on a coordinate plane.
origin	A point where the x-axis and y-axis intersect. The origin has the coordinates (0, 0).
output variable	The y of an equation; the information gained after the input is plugged into an equation.
quadrant	The x-and y-axes divide the coordinate plane into four regions called quadrants.
x-axis	The horizontal number line on a coordinate plane.
y-axis	The vertical number line on a coordinate plane.

B. Background Information

In this module, we focus primarily on functions. The secondary focus is ordered pairs and graphing related to functions. We include routines and examples for the following:
(1) Function Tables with Rules and Expressions
(2) Using the Rule in Function Tables
(3) Function Tables with Rules and Equations
(4) Function Tables and Ordered Pairs
(5) Graphing Ordered Pairs

C. Routines and Examples

(1) Function Tables with Rules and Expressions

Routine

Materials:

- Module 20 Problem Sets
- Module 20 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

\left.| ROUTINE | |
| :--- | :--- |
| Teacher | ROt's determine the rule for a function table and write an expression that |
| represents the rule. First, let's talk about a function table. A function table | |
| has two columns (for tables presented vertically)/two rows (for tables | |
| presented horizontally). What does a function table have? | |$\right\}$

any relationship between x and y that is the same for every pair of numbers in the function table?
Students (Comments on rule.)
Teacher Let's test out that rule. You said that if we start with x and then add/subtract/multiply/divide \qquad then we arrive at y. Let's see if that works. If x equals __ and we add/subtract/multiply/divide \qquad (rule), then y should be
\qquad . Is that true for the first pair of x and y ?
Yes.
Teacher

Students Now, we have to make sure the rule works for every pair of x and y in the function table. What do we have to do?

Teacher

Students Yes!
Teacher
So, we determined a rule about the relationship between x and y in this function table. What's the rule?
Students (Explains rule.)
Teacher Let's write the rule.
(Write rule. For example, +6 or -2 or $\div 5$.)
Teacher Now, let's write an expression for the rule. We'll use x in our expression. What happens to x with our rule?
Students (Explains rule.)
Teacher Using our rule, our expression would be $x+/-/ \times / \div$ _ (rule). Let's write our expression.
(Write expression. For example, $x+6$ or $x-2$ or $x \div 5$.)
Teacher What's our expression?
Students

Students

Teacher How did we write the expression?
Students We used the rule to write an expression about x.
Teacher Great work! How can you use the function table to determine a rule and expression?
Students Look at all the pairs of x and y. Determine the change between x and y and see if that change is the same for all pairs. Then, use the rule to write an expression about x.

Example

EXAMPLE

Teacher Let's determine the rule for a function table and write an expression that represents the rule. First, let's talk about a function table. A function table has two columns (for tables presented vertically)/two rows (for tables presented horizontally). What does a function table have?
Students Two columns/two rows.
Teacher Look at this function table. What do you notice about this table? (Show table.)
Students $\quad x$ is in a column and y is in a column.
Teacher In this function table, x and y are at the top of each column. We can use x and y to determine a rule about the relationship between x and y. What can we determine?
Students A rule about the relationship between x and y.
Teacher Using that rule, we can write an expression that represents the rule. What's an expression?
Students Numbers and operator symbols.
Teacher That's right. An expression is made of numbers and at least one operator symbol - like the plus sign, minus sign, multiplication symbol, or division symbol. An expression doesn't have an equal sign. What does an expression not have?
Students An equal sign.
Teacher With this function table, let's determine the rule. That's the relationship between x and y. Look at the x column. What do you notice about the numbers in the x column?
Students All the x values are positive.
Teacher The numbers in the x column are all positive. Now, look at the y column. What do you notice about the numbers in the \boldsymbol{y} column?
Students These y values are also positive. Each y value is greater than the corresponding x value.
Teacher The numbers in the y column are all positive. I also see that each y value is greater than the corresponding x value. Now, let's look at the relationship between each pair of x and y values. Look carefully. Do you see any relationship between x and y that is the same for every pair of numbers in the function table?
Students If you multiply x times 4, the product equals y.

Teacher	Let's test out that rule. You said that if we start with x and multiply x times 4, the product equals y. If x equals 2 and we multiply by 4 , then y should be 8 . Is that true for the first pair of x and y ?
Students	Yes.
Teacher	Now, we have to make sure the rule works for every pair of x and y in the function table. What do we have to do?
Students	See if the rule works for every pair.
Teacher	If the rule only works for one or two pairs, then it isn't the correct rule for this function table. Let's see if the rule works for every pair of x and y. Does the rule work?
Students	Yes!
Teacher	So, we determined a rule about the relationship between x and y in this function table. What's the rule?
Students	Times 4.
Teacher	Let's write the rule. Our rule is times 4. (Write rule: $\times 4$.)
Teacher	Now, let's write an expression for the rule. We'll use x in our expression. What happens to x with our rule?
Students	When we multiply x times 4 , the product is y.
Teacher	Using our rule, our expression would be x times 4. Let's write our expression. (Write expression: $x \times 4$.)
Teacher	What's our expression?
Students	x times 4.
Teacher	Super. We used this function table to do two things. First, we determined the rule that described the relationship between x and y. Second, we used that rule to write an expression that represented the rule. How did we determine the rule?
Students	We looked at each pair of x and y and found the relationship that was the same for each pair.
Teacher	How did we write the expression?
Students	We used the rule to write an expression about x.
Teacher	Great work! How can you use the function table to determine a rule and expression?
Students	Look at all the pairs of x and y. Determine the change between x and y and see if that change is the same for all pairs. Then, use the rule to write an expression about x.

(2) Using the Rule in Function Tables

Routine

Materials:

- Module 20 Problem Sets
- Module 20 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

	ROUTINE
Teacher	$\begin{array}{l}\text { Let's determine the rule for a function table and write an expression that } \\ \text { represents the rule. First, let's talk about a function table. A function table } \\ \text { has two columns (for tables presented vertically)/two rows (for tables } \\ \text { presented horizontally). What does a function table have? }\end{array}$
Two columns/two rows.	

Teacher	Let's test out that rule. You said that if we start with x and then add/subtract/multiply/divide \qquad , then we arrive at y. Let's see if that works. If x equals \qquad and we add/subtract/multiply/divide \qquad (rule), then \boldsymbol{y} should be \qquad . Is that true for the first pair of x and y ?
Students	Yes.
Teacher	Now, we have to make sure the rule works for every pair of x and y in the function table. What do we have to do?
Students	See if the rule works for every pair.
Teacher	If the rule only works for one or two pairs, then it isn't the correct rule for this function table. Let's see if the rule works for every pair of x and y. Does the rule work?
Students	Yes!
Teacher	So, we determined a rule about the relationship between x and y in this function table. What's the rule?
Students	(Explains rule.)
Teacher	Let's write the rule. (Write rule. For example, +6 or -2 or $\div 5$.)
Teacher	Now, let's write an expression for the rule. We'll use x in our expression. What happens to x with our rule?
Students	(Explains rule.)
Teacher	Using our rule, our expression would be $x+/-/ \times / \div$ \qquad (rule). Let's write our expression. (Write expression. For example, $x+6$ or $x-2$ or $x \div 5$.)
Teacher	What's our expression?
Students	
Teacher	Great work. Now, this function table has missing information. It's our job to fill in the missing information using our rule. What information is missing?
Students	x or y.
Teacher	In this table, x / y is missing. What's the rule or the relationship between x and y ? (Explains rule.)
Teacher	Let's use that rule to fill in the missing information. (Fill in missing information in table.)
Teacher	Awesome. How can you fill in missing information in a function table?
Students	Look at all the pairs of x and y. Determine the change between x and y and see if that change is the same for all pairs. Then, use the rule to write an expression about x. Finally, use the rule or expression to figure out any missing x or y values.

Example

x	2	4	7	10
y	-3	-1	-	5

	EXAMPLE
Teacher	Let's determine the rule for a function table and write an expression that represents the rule. First, let's talk about a function table. A function table has two columns (for tables presented vertically)/two rows (for tables presented horizontally). What does a function table have?
Students	Two columns/two rows.
Teacher	Look at this function table. Tell me what you notice about this function table. (Show table.)
Students	The information is organized by rows. Each row represents x or y.
Teacher	We can use x and y to determine a rule about the relationship between x and y. What can we determine?
Students	A rule about the relationship between x and y.
Teacher	Using that rule, we can write an expression that represents the rule. What's an expression?
Students	Numbers and operator symbols.
Teacher	That's right. An expression is made of numbers and at least one operator symbol - like the plus sign, minus sign, multiplication symbol, or division symbol. An expression does not have an equal sign.
Teacher	This is a function table. Tell me what you notice about the function table.
Students	The information is organized in rows. Each row represents x or y.
Teacher	With this function table, first, we will determine the rule. That's the relationship between x and y. Look at the x row. What do you notice about the numbers in the x row?
Students	The numbers are positive. The numbers are greater than the corresponding y values.
Teacher	The numbers in the x row are positive. I also see that each x value is greater than the corresponding y value. Now, look at the y row. What do you notice about the numbers in the y row?
Students	The numbers are a mix of positive and negative numbers. Each y value is less than the corresponding x value.
Teacher	The numbers in the y row are less than each of the corresponding y values. Now, let's look at the relationship between each pair of x and y values. Look carefully. Do you see any relationship between x and y that is the same for every pair of numbers in the function table?
Students	If you subtract 5 from x, the difference is y.
Teacher	Let's test out that rule. You said that if we start with x and then subtract 5 , then we arrive at y. Let's see if that works. If x equals 2 and we subtract 5 , then y should be -3 . Is that true for the first pair of x and y ?

Students
Yes.
Teacher Now, we have to make sure the rule works for every pair of x and y in the function table. What do we have to do?
Students See if the rule works for every pair.
Teacher If the rule only works for one or two pairs, then it isn't the correct rule for this function table. Let's see if the rule works for every pair of x and y. Does the rule work?
Students Yes!
Teacher So, we determined a rule about the relationship between x and y in this function table. What's the rule?
Students Subtract 5.
Teacher Let's write the rule.
(Write rule: - 5.)
Teacher Now, let's write an expression for the rule. We'll use x in our expression. What happens to x with our rule?
Students x minus 5 .
Teacher Using our rule, our expression would be $x-5$. Let's write our expression. (Write expression: $x-5$.)
Teacher What's our expression?
Students x minus 5 .
Teacher Now, this function table has missing information. It's our job to fill in the missing information using our rule. What information is missing?
Students y.
Teacher In this table, y is missing. What's the rule or the relationship between x and y ?
Students $\quad x$ minus 5 .
Teacher Let's use that rule to fill in the missing information. If x equals 7 and you subtract 5 , what would y be?
Students 2.
Teacher Let's write $\mathbf{2}$ in the blank for \boldsymbol{y}. (Write 2.)
Teacher Great job. How can you fill in missing information in a function table?
Students Look at all the pairs of x and y. Determine the change between x and y and see if that change is the same for all pairs. Then, use the rule to write an expression about x. Finally, use the rule or expression to figure out any missing x or y values.

(3) Function Tables with Rules and Equations

Routine

Materials:

- Module 20 Problem Sets
- Module 20 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

	ROUTINE
Teacher	$\begin{array}{l}\text { Let's determine the rule for a function table and write an equation that } \\ \text { represents the rule. First, let's talk about a function table. A function table } \\ \text { has two columns (for tables presented vertically)/two rows (for tables } \\ \text { presented horizontally). What does a function table have? }\end{array}$
Two columns/two rows.	

Teacher	Let's test out that rule. You said that if we start with x and then add/subtract/multiply/divide \qquad , then we arrive at y. Let's see if that works. If x equals \qquad and we add/subtract/multiply/divide \qquad (rule), then \boldsymbol{y} should be \qquad . Is that true for the first pair of x and y ?
Students	Yes.
Teacher	Now, we have to make sure the rule works for every pair of x and y in the function table. What do we have to do?
Students	See if the rule works for every pair.
Teacher	If the rule only works for one or two pairs, then it isn't the correct rule for this function table. Let's see if the rule works for every pair of x and y. Does the rule work?
Students	Yes!
Teacher	So, we determined a rule about the relationship between x and y in this function table. What's the rule?
Students	(Explains rule.)
Teacher	Let's write the rule. (Write rule. For example, +6 or -2 or $\div 5$.)
Teacher	Now, let's write an equation for the rule. We'll use both x and y in our equation. For a rule with addition or subtraction, let's write the equation as y $=x+/-a$. In this equation, a represents the number in the rule. How do we write an equation for a rule with addition and subtraction?
Students	$y=x+/-a$.
Teacher	For a rule with multiplication or division, let's write the equation as $y=a x$ or y $=x \div a$. In this equation, a represents the number in the rule. How do we write an equation for a rule with multiplication or division?
Students	For multiplication, $y=a x$. For division, $y=x \div a$.
Teacher	Using our rule, our equation would be $\boldsymbol{y}=$ \qquad . Let's write our equation. (Write equation.)
Teacher	What's our equation?
Students	$y=$
Teacher	Nice work. We used this function table to do two things. First, we determined the rule that described the relationship between x and y. Second, we used that rule to write an equation that represented the rule. How did we determine the rule?
Students	We looked at each pair of x and y and found the relationship that was the same for each pair.
Teacher	How did we write the equation?
Students	We used the rule to write an equation about x and y.
Teacher	So, how can you use the function table to determine a rule and equation?
Students	Look at all the pairs of x and y. Determine the change between x and y and see if that change is the same for all pairs. Then, use the rule to write an equation showing the relationship between x and y.

Example

x	y
6	1
36	6
60	10

EXAMPLE

Teacher Let's determine the rule for a function table and write an equation that represents the rule. First, let's talk about a function table. A function table has two columns (for tables presented vertically)/two rows (for tables presented horizontally). What does a function table have?
Students Two columns/two rows.
Teacher Look at this function table. What do you notice about this table? (Show function table.)
Students x and y are in columns.
Teacher We can use x and y to determine a rule about the relationship between x and y. What can we determine?
Students A rule about the relationship between x and y.
Teacher Using that rule, we can write an equation that represents the rule. What's an equation?
Students Numbers and operator symbols with an equal sign.
Teacher That's right. An equation is made of numbers and at least one operator symbol as well as the equal sign. Look at the function table. First, we will determine the rule. That's the relationship between x and y. Look at the x column. What do you notice about the numbers in the x column?
Students Each x is greater than each y.
Teacher The numbers in the x column are greater than each corresponding y value. Now, look at the y column. What do you notice about the numbers in the y column?
Students Each y value is less than each corresponding x value.

Teacher

Students
The numbers in the y column are less than each corresponding x value. Now, let's look at the relationship between each pair of x and y values. Look carefully. Do you see any relationship between x and y that is the same for every pair of numbers in the function table?

Teacher Let's test out that rule. You said that if we start with x and then divide by 6 , then we arrive at y. Let's see if that works. If x equals 6 and we divide by 6 , then y should be 1. Is that true for the first pair of x and y ?
Students Yes.
Teacher Now, we have to make sure the rule works for every pair of x and y in the function table. What do we have to do?
Students See if the rule works for every pair.

Teacher	If the rule only works for one or two pairs, then it isn't the correct rule for this function table. Let's see if the rule works for every pair of x and y. Does the rule work?
Students	Yes!
Teacher	So, we determined a rule about the relationship between x and y in this function table. What's the rule?
Students	Divide by 6.
Teacher	Let's write the rule. (Write rule: $\div 6$.)
Teacher	Now, let's write an equation for the rule. We'll use both x and y in our equation. For a rule with addition or subtraction, let's write the equation as y $=x+/-a$. In this equation, a represents the number in the rule. How do we write an equation for a rule with addition and subtraction?
Students	$y=x+/-a$.
Teacher	For a rule with multiplication or division, let's write the equation as $y=a x$ or y $=x \div a$. In this equation, a represents the number in the rule. How do we write an equation for a rule with multiplication or division?
Students	For multiplication, $y=a x$. For division, $y=x \div a$.
Teacher	Using our rule, our equation would be $\boldsymbol{y}=\boldsymbol{x} \div 6$. Let's write our equation. (Write: $y=x \div 6$.)
Teacher	What's our equation?
Students	$y=x \div 6$.
Teacher	Nice work. We used this function table to do two things. First, we determined the rule that described the relationship between x and y. Second, we used that rule to write an equation that represented the rule. How did we determine the rule?
Students	We looked at each pair of x and y and found the relationship that was the same for each pair.
Teacher	How did we write the equation?
Students	We used the rule to write an equation about x and y.
Teacher	So, how can you use the function table to determine a rule and equation?
Students	Look at all the pairs of x and y. Determine the change between x and y and see if that change is the same for all pairs. Then, use the rule to write an equation showing the relationship between x and y.

(4) Function Tables and Ordered Pairs

Routine

Materials:

- Module 20 Problem Sets
- Module 20 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

ROUTINE
Teacher Let's use this function table to determine ordered pairs. First, what's a function table?
Students It's a table that shows the relationship between x and y.
Teacher Yes. A function table shows the relationship between x and y. Second, what's an ordered pair?
Students It's a way to write x and y.
Teacher An ordered pair shows the relationship between one x and y pair. We write an ordered pair in parentheses. What do we write in parentheses?
Students An ordered pair.
Teacher And we write the ordered pair as \boldsymbol{x} comma \boldsymbol{y}. How do we write the ordered pair?
Students x comma y.
Teacher Let's get started. (Show function table.)
Teacher This is a function table. In this table, each x is paired with a y. The x represents the first number in an ordered pair. What does the x represent?
Students The first number in the ordered pair.
Teacher The x tells you how many spaces from the origin of a coordinate plane you move horizontally. What does x represent?
Students How many spaces from the origin you move horizontally or across.
Teacher The y represents the second number in an ordered pair. What does the y represent?
Students The second number in the ordered pair.
Teacher The \boldsymbol{y} tells you how many spaces from the \boldsymbol{x} of a coordinate plane you move vertically or up and down. What does y represent?
Students How many spaces from x you move vertically.
Teacher So, let's write all the ordered pairs we have in this function table. What's one ordered pair?
Students $\quad(x, y)$.
Teacher Yes. Let's write that ordered pair.
(Write ordered pair.)
Teacher What's another ordered pair from the function table?
Students (x, y).
Teacher Yes. Let's write that ordered pair.

Teacher	(Write ordered pair.) Let's write all the ordered pairs from the function table. (Write ordered pairs.) Let's read our ordered pairs. We read them from left to right, like "three, four" or "negative seven, five." (Reads ordered pairs.)
Teacher	
Students	
Teacher	Super! We used this function table to write ordered pairs. We wrote each ordered pair in parentheses as x comma y. How did we write the ordered pairs?
Students \quadWe wrote each ordered pair in parentheses as x comma y.	
Teacher	Great. How could you explain ordered pairs to a friend? Students In an ordered pair, x represents the number of spaces from the origin of a coordinate plane that you move horizontally. The y represents the number of spaces from x of a coordinate plane that you move vertically.

Example

x	-1	1	5
y	-3	-1	3

EXAMPLE

Teacher	Let's use this function table to determine ordered pairs. First, what's a function table?
Students	It's a table that shows the relationship between x and y.
Teacher	Yes. A function table shows the relationship between x and y. Second, what's an ordered pair?
Students	It's a way to write x and y.
Teacher	An ordered pair shows the relationship between one x and y pair. We write an ordered pair in parentheses. What do we write in parentheses?
Students	An ordered pair.
Teacher	And we write the ordered pair as x comma y. How do we write the ordered pair?
Students	x comma y.
Teacher	Let's get started. (Show function table.)
Teacher	This is a function table. In this table, each x is paired with a y. The x represents the first number in an ordered pair. What does the x represent?
Students	The first number in the ordered pair.
Teacher	The x tells you how many spaces from the origin of a coordinate plane you move horizontally or across. What does x represent?
Students	How many spaces from the origin you move horizontally or across.

Teacher The y represents the second number in an ordered pair. What does the \boldsymbol{y} represent?
Students The second number in the ordered pair.
Teacher The \boldsymbol{y} tells you how many spaces from the \boldsymbol{x} of a coordinate plane you move vertically or up and down. What does y represent?
Students How many spaces from x you move vertically or up and down.
Teacher So, let's write all the ordered pairs we have in this function table. What's one ordered pair?
Students $\quad(-1,-3)$.
Teacher Yes. Let's write that ordered pair.
(Write: (-1, -3).)
Teacher What's another ordered pair from the function table?
Students (1, -1).
Teacher Yes. Let's write that ordered pair.
(Write: (1, -1).)
Teacher Let's write all the ordered pairs from the function table. (Write: (5, 3).)
Teacher Let's read our ordered pairs. We read them from left to right.
Students Negative 1, negative 3.
1, negative 1 .
5, 3.
Teacher Great work! We used this function table to write ordered pairs. We wrote each ordered pair in parentheses as x comma y. How did we write the ordered pairs?
Students We wrote each ordered pair in parentheses as x comma y.
Teacher Great. How could you explain ordered pairs to a friend?
Students In an ordered pair, x represents the number of spaces from the origin of a coordinate plane that you move horizontally. The y represents the number of spaces from x of a coordinate plane that you move vertically.

(5) Graphing Ordered Pairs

Routine

Materials:

- Module 20 Problem Sets
- Module 20 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

	ROUTINE
Teacher	
Students	

It shows the relationship between one x and y pair.\end{array}\right]\)
$\left.\begin{array}{ll}\text { Students } \\ \text { Teacher }\end{array} \quad \begin{array}{l}\text { How many spaces from the origin you move horizontally or across. } \\ \text { So, let's start at the origin. Where's the origin on this coordinate plane? } \\ \text { (Describes origin.) }\end{array}\right]$

We started at the origin. We moved x spaces horizontally from the origin. Then, we moved y spaces vertically from the x. We drew a dot and labeled the ordered pair.

Example

$(-4,5)$

	Example
Teacher	Let's graph ordered pairs on a coordinate plane. What's an ordered pair?
Students	It shows the relationship between one x and y pair.
Teacher	Yes. An ordered pair shows the relationship between one x and y pair. Today, we'll plot or mark ordered pairs on this coordinate plane. (Show coordinate plane.)
Teacher	What do you notice about this coordinate plane?
Students	It has an origin. It has four quadrants. It has an x-axis and a y-axis.
Teacher	This is a coordinate plane. The coordinate plane has an origin. The origin is where the x-axis and y-axis intersect. What's the origin?
Students	Where the x-axis and y-axis intersect.
Teacher	Speaking of axes, this (point) is the x-axis. The x-axis is a line that runs horizontal or across. What's the x-axis?
Students	A horizontal line.
Teacher	This (point) is the y-axis. The y-axis is a line that runs vertical or up and down. What's the y-axis?
Students	A vertical line.
Teacher	The x-axis and y-axis are the axes. Say that with me.
Students	Axes.
Teacher	The axes create different quadrants. For example, sometimes, if we're only focused on positive numbers, our coordinate plane will have one quadrant. If we're focused on both positive and negative numbers, our coordinate plane will show four quadrants. A quadrant is the space created by the x-axis and y axis from the origin. How many quadrants in this coordinate plane?
Students	Four.
Teacher	Let's get started. (Show ordered pair.)
Teacher	This is an ordered pair. Read this ordered pair.
Students	(-4, 5).
Teacher	The first number in an ordered pair represents x. What does the first number represent?
Students	x.
Teacher	The first number tells you how many spaces from the origin of a coordinate plane you move horizontally or across. What does x or the first number represent?
Students	How

Teacher	So, let's start at the origin. Where's the origin on this coordinate plane? (Describes origin.)
Teacher	The origin is the place where the x-axis and y-axis intersect. It's helpful to think of the origin as the ordered pair (0,0). How can we interpret the origin as an ordered pair?
Students	$(0,0)$.
Teacher	If x is positive, we'll move forward from the origin along the x-axis. How do we move if x is positive?
Students	Forward.
Teacher	If x is negative, we'll move backward from the origin along the x-axis. How do we move if x is negative?
Students	Backward.
Teacher	Let's mark x on this coordinate plane. Is x positive or negative?
Students	Negative.
Teacher	Because -4 is negative, we'll move backward from the origin. Starting at the origin, let's move our pencil $-1,-2,-3,-4$ horizontally from the origin along the x-axis. (Move pencil backward 4 spaces from origin.)
Teacher	Now, I leave my pencil where it is and turn my attention to the second number in the ordered pair. The second number in an ordered pair represents y. What does the second number represent?
Students	y.
Teacher	The second number tells you how many spaces from the x of a coordinate plane you move vertically or up and down. What does y or the second number represent?
Students	How many spaces from x you move vertically or up and down.
Teacher	So, let's start at \boldsymbol{x}. Where's \boldsymbol{x} on this coordinate plane?
Students	(-4.)
Teacher	If y is positive, we'll move up from x along the y-axis. How do we move if y is positive?
Students	Up.
Teacher	If y is negative, we'll move down from x along the y-axis. How do we move if y is negative?
Students	Down.
Teacher	Because 5 is positive, we'll move up vertically from -4. Starting at -4, let's move our pencil 1, 2, 3, 4, 5 spaces vertically from -4. (Move pencil up 5 spaces from -4. Draw dot at location of ordered pair.)
Teacher	So, we marked $(-4,5)$ on the coordinate plane. Let's label this dot with our ordered pair. (Write (-4, 5).)
Teacher	We used this coordinate plane to mark or plot an ordered pair. How did we plot the ordered pair?
Students	We moved -4 spaces horizontally from the origin and then 5 spaces vertically from -4.

Teacher	Great. How could you explain plotting an ordered pair on a coordinate plane to a friend?
Students	We started at the origin. We moved x spaces horizontally from the origin. Then, we moved y spaces vertically from the x. We drew a dot and labeled the ordered pair.

D. Problems for Use During Instruction

See Module 20 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 20 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 20: Functions and Ordered Pairs

Problem Sets

A. Function tables with positive numbers and $3 x / y$ columns (20)
B. Function tables with positive numbers and $3 x / y$ rows (20)
C. Function tables with positive numbers, $4 x / y$ columns, and missing information (20)
D. Function tables with positive numbers, $4 x / y$ rows, and missing information (20)
E. Function tables with positive and negative numbers and $3 x / y$ columns (10)
F. Function tables with positive and negative numbers and $3 x / y$ rows (10)
G. Function tables with positive and negative numbers, $4 x / y$ columns, and missing information (10)
H. Function tables with positive and negative numbers, $4 x / y$ rows, and missing information (10)
I. Ordered pairs with positive numbers (20)
J. Ordered pairs with positive and negative numbers (20)
K. One quadrant coordinate plane (1)
L. Four quadrant coordinate plane (1)
A.

A.

A.

A.

x	y
2	7
3	8
5	10

A.

A.

A.

x	y
10	2
13	5
18	10

A.

x	y
6	1
8	3
11	6

A.

A.

A.

A.

x	y
0	0
5	45
6	54

A.

A.

x	y
2	20
3	30
5	50

A.

A.

A.

A.

A.

A.

B.

x	2	4	6
y	4	6	8

B.

x	1	3	4
y	5	7	8

B.

x	3	4	5
y	10	11	12

B.

x	2	3	5
y	7	8	10

B.

x	1	4	7
y	9	12	15

B.

B.

x	10	13	18
y	2	5	10

B.

B.

x	14	18	22
y	11	15	18

B.

x	1	2	3
y	0	1	2

B.

B.

x	0	5	6
y	0	45	54

B.

x	4	6	7
y	4	6	7

B.

x	2	3	5
y	20	30	50

B.

x	1	3	4
y	5	15	20

B.

x	9	27	54
y	1	3	6

B.

x	14	28	49
y	2	4	7

B.

x	56	72	88
y	7	9	11

B.

x	3	6	9
y	1	2	3

B.

x	30	40	60
y	3	4	6

C.

x	y
2	5
5	8
6	9
9	

C.

x	y
1	7
3	
5	11
7	13

C.

x	y
4	
7	12
10	15
14	19

C.

x	y
12	22
$-\overline{18}$	25
20	30

C.

x	y
5	19
6	20
-2	21
10	24

C.

x	y
10	6
13	9
18	14
-	24

C.

x	y
13	3
29	-
58	48
65	55

C.

x	y
23	-
35	28
49	42
61	54

C.

x	y
-	11
34	25
47	38
59	50

C.

x	y
11	0
12	1
$-\overline{26}$	11

C.

x	y
	4
2	8
3	12
4	16

C.

x	y
0	0
2	-
3	6
5	10

C.

x	y
2	22
3	33
4	44
	55

C.

x	y
3	-
4	24
7	54
12	72

C.

x	y
2	16
	32
5	40
6	48

C.

x	y
4	-
20	5
32	8
36	9

C.

x	y
16	2
-	3
56	7
64	8

C.

x	y
4	2
8	4
18	
20	10

C.

x	y
10	2
-	3
20	4
25	5

C.

x	y
9	3
15	5
21	7
27	

D.

x	2	5	6	9
y	5	8	9	

D.

x	1	3	5	7
y	7		11	13

D.

x	4	7	10	14
y		12	15	19

D.

x	12	-	18	20
y	22	25	28	30

D.

x	5	6		10
y	19	20	21	24

D.

x	10	13	18	
y	6	9	14	24

D.

x	13	29	58	65
y	3	-	48	55

D.

x	23	35	49	61
y	-	28	42	54

D.

x		34	47	59
y	11	25	38	50

D.

x	11	12		26
y	0	1	11	15

D.

D.

x	0	2	3	5
y	0		6	10

D.

D.

x	3	4	7	12
y	-	24	54	72

D.

x	2		5	6
y	16	32	40	48

D.

x	4	20	32	36
y	-	5	8	9

D.

x	16		56	64
y	2	3	7	8

D.

x	4	8	18	20
y	2	4		10

D.

x	10		20	25
y	2	3	4	5

D.

x	9	15	21	27
y	3	5	7	

E.

x	y
-1	3
-2	2
-3	1

E.

x	y
-9	-6
-8	-5
-7	-4

E.

x	y
-6	0
-12	-6
-18	-12

E.

x	y
0	-2
1	-1
2	0

E.

x	y
-8	-5
4	1
7	4

E.

x	y
2	-3
7	2
13	8

E.

x	y
-4	-16
-5	-20
6	24

E.

x	y
-5	0
-7	0
-16	0

E.

x	y
8	4
-8	-4
-12	-6

E.

x	y
-6	-1
-12	-2
18	3

x	-1	-2	-3
y	3	2	1

x	-9	-8	-7
y	-6	-5	-4

x	-6	-12	-18
y	0	-6	-12

	Pr		
	-		

x	-8	4	7
y	-5	1	4

x	2	7	13
y	-3	2	8

x	-4	-5	6
y	-16	-20	24

	P7		
\square			

x	8	-8	-12
y	4	-4	-6

x	-6	-12	18
y	-1	-2	3

G.

x	y
-10	-10
-10	0
0	10
10	20

G.

-4	
	-

G.

x	y
-45	-30
-	-15
-15	0
15	30

G.

x	y
-1	-6
0	-
1	-4
2	-3

G.

x	y
18	9
-9	0
-18	-12
-18	-27

G.

x	y
26	13
14	1
-23	-
-54	-67

G.

x	y
-7	-49
-9	-63
-10	-70
-	-77

G.

x	y
3	-
4	48
5	60
6	72

G.

x	y
-63	-11
-63	-9
-42	-6
-21	-3

G.

x	y
-8	-
-6	3
-4	2
-2	1

H.

x	-10	-10	0	10
y	-10	0	10	20

H.

x	-16	-8	-4	0
y	-8	0	4	

H.

x	-45	-	-15	15
y	-30	-15	0	30

H.

x	-1	0	1	2
y	-6		-4	-3

H.

x	18	-9	-	-18
y	9	0	-12	-27

H.

x	26	14	-23	-54
y	13	1	-	-67

H.

$$
\begin{array}{|c|c|c|c|c|}
\hline x & -7 & -9 & -10 & \\
\hline y & -49 & -63 & -70 & -77 \\
\hline
\end{array}
$$

H.

x	3	4	5	6
y	-	48	60	72

H.

$$
\begin{array}{|l|c|c|c|c|}
\hline x & - & -63 & -42 & -21 \\
\hline y & -11 & -9 & -6 & -3 \\
\hline
\end{array}
$$

H.

x	-8	-6	-4	-2
y		3	2	1

I.

I.
$(9,5)$
I.

I.
$(0,4)$
I.
$(6,2)$
I.

$(5,0)$

I.
$(9,9)$
I.

I.
$(0,7)$
I.

$(1,1)$

I.

$(3,6)$

I.
$(7,15)$
I.

$$
(8,11)
$$

I.

$$
(8,10)
$$

I.

$$
(12,0)
$$

I.
$(4,4)$
I.
$(6,4)$
I.

I.

$(4,3)$

I.

$$
(13,3)
$$

$(-5,8)$

$$
(-9,5)
$$

$$
(0,-4)
$$

$$
(-6,2)
$$

$(-5,0)$

$(7,-15)$

$$
(8,-11)
$$

$(-8,10)$

$(-12,0)$

$(-4,4)$

$$
(6,-4)
$$

$(4,-3)$

J.

$$
(-13,3)
$$

K.

Module 20:

Functions and Ordered Pairs

Vocabulary Cards

coordinate plane
equation
expression
function
function table input variable
ordered pair origin
output variable
quadrant
x-axis
y-axis

coordinate plane

A two-dimensional plane formed at the intersection of the x-axis and y-axis.

equation

A mathematical statement that two expressions are the same or equal; must have an equal sign.

$$
\begin{gathered}
5 x+9=24 \\
5 x+9=24 \text { is an equation } \\
\text { (DOES have an }=\text { sign) }
\end{gathered}
$$

expression

A combination of variables, numbers, and/or operations that represents a mathematical relationship; does not have an equal sign.

$$
\begin{gathered}
5 x+9 \\
5 x+9 \text { and } 24 \text { are expressions } \\
\text { (DOES NOT have an }=\text { sign }
\end{gathered}
$$

function

A relationship between two quantities in which every input corresponds to exactly one output.

x	y
2	6
5	15
10	30

function table

A table that displays a set of inputs and outputs in such a way that each input has a unique output.

\boldsymbol{x}	y				
1	5				
3	7	\boldsymbol{x}	1	3	4
4	8	y	5	7	8

input variable

The x of an equation; the information put in to find the output.
In the equation $x+1=y$, x is the input variable

ordered pair

A pair of numbers used to locate a point on a coordinate plane.

$$
\begin{aligned}
& \text { Examples: } \\
& (-4,3)(0,2)(6,-1)
\end{aligned}
$$

origin

A point where the x-axis and y-axis intersect. The origin has the coordinates $(0,0)$.

output variable

The y of an equation; the information gained after the input is plugged into an equation.

In the equation $x+1=y, y$ is the output variable

quadrant

The x - and y-axes divide the coordinate plane into four regions called quadrants.

x-axis

The horizontal number line on a coordinate plane.

y-axis

The vertical number line on a coordinate plane.

