

## Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

## MODULE 22

## Representing Expressions and Equations



## Module 22: Representing Expressions and Equations Mathematics Routines

## A. Important Vocabulary with Definitions

| Term | Definition |
| :--- | :--- |
| base | A number that is multiplied by an exponent. |
| coefficient | A number that is multiplied by a variable. |
| constant | A term that does not change; a number on its own. |
| equation | A mathematical statement that two expressions are the same or <br> equal; must have an equal sign. |
| exponent | The power to which a number is raised. |
| expression | A combination of variables, numbers, and/or operations that <br> represents a mathematical relationship; does not have an equal <br> sign. |
| grouping | A combination of variables, numbers, and/or operations grouped <br> together in parentheses or brackets. |
| inequality | An algebraic relation showing that a quantity is greater or less <br> than another quantity. |
| like terms | Terms that have the same variable or constant and can be <br> combined. |
| operator | A symbol (+,,$- \times, \div)$ that represents a mathematical operation. |
| term | A single number or a variable, or numbers or variables multiplied <br> together. |
| variable | A symbol for an unknown value, which is usually represented by a <br> letter. |

## B. Background Information

In this module, we focus on early algebraic concepts:
(1) Order of Operations
(2) Representing Expressions
(3) Representing Equations

## C. Routines and Examples

## (1) Order of Operations

## Routine

## Materials:

- Module 22 Problem Sets
- Module 22 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching


## ROUTINE

| Teacher | Let's learn about the order of operations. What's an operation? <br> Students <br> Teacher |
| :--- | :--- |
|  | Add, subtract, multiply, or divide. <br> The operations we'll focus on today are adding, subtracting, multiplying, and <br> dividing. When you see an expression like $2+3$, you see a plus sign and add. <br> You don't have to think about the order of operations. But if you see an <br> expression like $2[(8 \times 5) \div 4]-(3+5)$, we have to think about the order in <br> which we'll do the operations. We don't always work left to right. Look at this <br> problem. <br> (Show problem.) |
| Let's read this problem together. |  |


| Students Teacher | Do multiplication and division. <br> We'll multiply or divide any parts of the expression or equation. The fourth step for applying the order of the operations is to do any addition or subtraction. What's the fourth step? |
| :---: | :---: |
| Students | Do addition and subtraction. |
| Teacher | Yes. We'll add or subtract any parts of the expression or equation. So, let's review. To simplify expressions or solve equations you apply the order of the operations. We do the Grouping, then Exponents, then Multiplication and Division, then Addition and Subtraction. What's the order of the operations? |
| Students | Grouping, Exponents, Multiplication and Division, Addition and Subtraction. |
| Teacher | Now, let's practice. Let's simplify this expression. What should we think about first? |
| Students | Grouping. |
| Teacher | Are there any groupings with brackets or parentheses? |
| Students | Yes/no. |
| Teacher | IF YES: There is a grouping. Let's do the math within each of the groups. (Write.) |
| Teacher | What's the second step for applying the order of the operations? |
| Students | Exponents. |
| Teacher | Are there any exponents? |
| Students | Yes/no. |
| Teacher | IF YES: There is an exponent. Let's do the math for each of the bases and exponents. <br> (Write.) |
| Teacher | What's the third step for applying the order of the operations? |
| Students | Multiplication and Division. |
| Teacher | Is there any multiplication or division for us to do? |
| Students | Yes/no. |
| Teacher | IF YES: There is multiplication or division. Let's do the math for the multiplication and division. Let's work the problem left to right doing all the multiplication and division. <br> (Write.) |
| Teacher | What's the fourth step for applying the order of the operations? |
| Students | Addition and Subtraction. |
| Teacher | Is there any addition or subtraction for us to do? |
| Students | Yes/no. |
| Teacher | IF YES: There is addition or subtraction. Let's do the math for the addition or subtraction. Let's work the problem left to right doing all the addition and subtraction. <br> (Write.) |
| Teacher | Look at the problem. Did we simplify the expression or solve the equation? |
| Students | Yes! |
| Teacher | We followed the order of the operations to simplify or solve. Let's review. What's the order of the operations? |

Students Grouping, Exponents, Multiplication and Division, Addition and Subtraction.
Teacher When do you use the order of the operations?
Students Whenever you have an expression or equation with more than one operator symbol.
Teacher How could you explain the order of operations to a friend?
Students First, you do the math for any groupings with brackets and parentheses. Then, you do the math for any exponents. Then, you do any of the multiplication and division. Finally, you do any of the addition and subtraction.

## Example

$18 \div 6 \times(4+3)-6$

## EXAMPLE

| Teacher | Let's learn about the order of operations. What's an operation? <br> Students <br> Add, subtract, multiply, or divide. |
| :--- | :--- |
| Teacher |  |
| The operations we'll focus on today are adding, subtracting, multiplying, and |  |
| dividing. When you see an expression with multiple operations, we have to |  |
| think about the order in which we'll do the operations. We don't always work |  |
| left to right. Look at this problem. |  |
| (Show problem.) |  |
| Let's read this problem together. |  |


| Teacher | We'll multiply or divide any parts of the expression or equation. The fourth <br> step for applying the order of the operations is to do any addition or <br> subtraction. What's the fourth step? |
| :--- | :--- |

Students Addition and Subtraction.
Teacher Is there any addition or subtraction for us to do?
Students Yes.
Teacher There is addition or subtraction. Let's work the problem left to right doing all the addition and subtraction. What do we need to do?
Students 21-6.
Teacher Yes. What's 21 minus 6?
Students 15.
(Write 15.)
Teacher Look at the problem. Did we simplify the expression or solve the equation?
Students Yes!
Teacher We followed the order of the operations to simplify or solve. Let's review. What's the order of the operations?
Students Grouping, Exponents, Multiplication and Division, Addition and Subtraction.
Teacher When do you use the order of the operations?
Students Whenever you have an expression or equation with more than one operator symbol.
Teacher How could you explain the order of operations to a friend?
Students First, you do the math for any groupings with brackets and parentheses. Then, you do the math for any exponents. Then, you do any of the multiplication and division. Finally, you do any of the addition and subtraction.

## (2) Representing Expressions

## Routine

Materials:

- Module 22 Problem Sets
- Module 22 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A manipulative like algebra tiles


## ROUTINE WITH MANIPULATIVES

Teacher Let's show different expressions. What's an expression?
Students Numbers and operator symbols.
Teacher An expression has numbers and operator symbols. An expression does not have an equal sign or inequality symbol. What's not in an expression?
Students Equal sign or inequality symbol.
Teacher Let's represent different expressions with these algebra tiles. (Show manipulatives.)
Teacher With the algebra tiles, we'll interpret this unit to represent a constant. What's a constant?
Students A number or value that does not change.

Teacher
Teacher

Students
Teacher
Students
Teacher

Students
Teacher
Students
Teacher
Students

## Teacher

Students
Teacher

Students
Teacher
Students
Teacher
Students
Teacher

Teacher
Students
Teacher

Students
Teacher

Students
Teacher

Students
Teacher
Students
Teacher

Teacher

Yes. A constant is a number or value that does not change.
We'll use this unit to show the constant. The unit has a positive side. That's brown. What color is the positive side?
Brown.
The unit also has a negative side. That's red. What color is the negative side? Red.
With the algebra tiles, we'll interpret this rod to represent our variable. What will the rod represent?
A variable.
And the rod has a positive side. That's green. What color is the positive side? Green.
The rod also has a negative side. That's red. What color is the negative side? Red.
If this rod is our variable, then this flat represents the variable squared or $\boldsymbol{x}^{2}$. What does the flat represent?
The variable squared.
This flat represents $\boldsymbol{x}^{2}$ because we can multiply $\boldsymbol{x}$ times $\boldsymbol{x}$ (show multiplication) to create the area of $x^{2}$. Why does the flat represent $x^{2}$ ?
Because the area created by multiplying $x$ times $x$ equals the area of $x^{2}$.
The flat has a positive side. That's blue. What color is the positive side?
Blue.
The flat also has a negative side. That's red. What color is the negative side? Red.
Now, let's show an expression with the algebra tiles. Remember, we have pieces that represent the variable squared (show), the variable (show), and the constant (show). Look at this expression.
(Show problem.)
Read the expression.
$\qquad$
How would we show the expression with the algebra tiles? First, do we have any squared variables we need to show?
Yes/no.
IF YES: We need to show a squared variable. Which of the algebra tiles will we use?
Flat.
Look to see if there's a coefficient with the squared variable. The coefficient tells us how many of the flats we will show. How many flats?

And is the squared variable positive or negative?
$\qquad$
Let's show __ flats to show the squared variable.
(Show tiles.)
Now, do we have any variables we need to show?

Students Yes/no.

Teacher
Students
Teacher

Students
Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher

Teacher

Students
Teacher
Students

IF YES: We need to show a variable. Which of the algebra tiles will we use? Rod.
Look to see if there's a coefficient with the variable. The coefficient tells us how many of the rods we will show. How many rods?
$\qquad$
And is the variable positive or negative?
$\qquad$
Let's show __ rods to show the variable.
(Show tiles.)
Now, do we have any constants we need to show?
Yes/no.
IF YES: We need to show a constant. Which of the algebra tiles will we use?
Unit.
How many units should we use?
$\qquad$
And is the constant positive or negative?
$\qquad$
Let's show $\qquad$ units to show the constant.
(Show tiles.)
We used the algebra tiles to show an expression. What expression did we show?
$\qquad$
How can you use the algebra tiles to show expressions?
Use the flats to show squared variables. Use the rods to show variables. Use the units to show the constant.

Example

$$
x^{2}-3 x+4
$$

## EXAMPLE WITH MANIPULATIVES

Teacher Let's show different expressions. What's an expression?
Students Numbers and operator symbols.
Teacher An expression has numbers and operator symbols. An expression does not have an equal sign or inequality symbol. What's not in an expression?
Students Equal sign or inequality symbol.
Teacher Let's represent different expressions with these algebra tiles.
(Show manipulatives.)
Teacher With the algebra tiles, we'll interpret this unit to represent a constant. What's a constant?
Students A number or value that does not change.
Teacher Yes. A constant is a number or value that does not change.

| Teacher | We'll use this unit to show the constant. The unit has a positive side. That's brown. What color is the positive side? |
| :---: | :---: |
| Students | Brown. |
| Teacher | The unit also has a negative side. That's red. What color is the negative side? |
| Students | Red. |
| Teacher | With the algebra tiles, we'll interpret this rod to represent our variable. What will the rod represent? |
| Students | A variable. |
| Teacher | And the rod has a positive side. That's green. What color is the positive side? |
| Students | Green. |
| Teacher | The rod also has a negative side. That's red. What color is the negative side? |
| Students | Red. |
| Teacher | If this rod is our variable, then this flat represents the variable squared or $\boldsymbol{x}^{2}$. What does the flat represent? |
| Students | The variable squared. |
| Teacher | This flat represents $\boldsymbol{x}^{2}$ because we can multiply $\boldsymbol{x}$ times $\boldsymbol{x}$ (show multiplication) to create the area of $x^{2}$. Why does the flat represent $\boldsymbol{x}^{2}$ ? |
| Students | Because the area created by multiplying $x$ times $x$ equals the area of $x^{2}$. |
| Teacher | The flat has a positive side. That's blue. What color is the positive side? |
| Students | Blue. |
| Teacher | The flat also has a negative side. That's red. What color is the negative side? |
| Students | Red. |
| Teacher | Now, let's show an expression with the algebra tiles. Remember, we have pieces that represent the variable squared (show), the variable (show), and the constant (show). Look at this expression. <br> (Show problem.) |
| Teacher | Read the expression. |
| Students | $x^{2}-3 x+4$. |
| Teacher | How would we show the expression with the algebra tiles? First, do we have any squared variables we need to show? |
| Students | Yes. |
| Teacher | We need to show a squared variable. Which of the algebra tiles will we use? |
| Students | Flat. |
| Teacher | Look to see if there's a coefficient with the squared variable. The coefficient tells us how many of the flats we will show. How many flats? |
| Students | 1. |
| Teacher | Yes, there's no coefficient so we assume the coefficient is 1 . And is the squared variable positive or negative? |
| Students | Positive. |
| Teacher | Let's show 1 blue flat to show the squared variable. (Show tiles.) |
| Teacher | Now, do we have any variables we need to show? |
| Students | Yes. |
| Teacher | We need to show a variable. Which of the algebra tiles will we use? |

Students Rod.
Teacher Look to see if there's a coefficient with the variable. The coefficient tells us how many of the rods we will show. How many rods?
Students 3.
Teacher And is the variable positive or negative?
Students Negative.
Teacher Let's show 3 red rods to show the variable.
Students (Show tiles.)
Teacher Now, do we have any constants we need to show?
Students Yes.
Teacher We need to show a constant. Which of the algebra tiles will we use?
Students Unit.
Teacher How many units should we use?
Students 4.
Teacher And is the constant positive or negative?
Students Positive.
Teacher Let's show 4 brown units to show the constant. (Show tiles.)
Teacher We used the algebra tiles to show an expression. What expression did we show?
Students $\quad x^{2}-3 x+4$.
Teacher How can you use the algebra tiles to show expressions?
Students Use the flats to show squared variables. Use the rods to show variables. Use the units to show the constant.

## (3) Representing Equations

## Routine

## Materials:

- Module 22 Problem Sets
- Module 22 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like two-color counters or multi-colored cubes

ROUTINE WITH MANIPULATIVES
Teacher Let's show different equations. What's an equation?
Students Two equal expressions with an equal sign.
Teacher An equation always has an equal sign. What's always in an equation?
Students An equal sign.
Teacher Let's represent different equations with these algebra tiles.
(Show manipulatives.)
Teacher With the algebra tiles, we'll interpret this unit to represent a constant. What's a constant?
Students A number or value that does not change.
Teacher Yes. A constant is a number or value that does not change.
Teacher We'll use this unit to show the constant. The unit has a positive side. That's brown. What color is the positive side?
Students Brown.
Teacher The unit also has a negative side. That's red. What color is the negative side?
Students Red.
Teacher With the algebra tiles, we'll interpret this rod to represent our variable. What will the rod represent?
Students A variable.
Teacher And the rod has a positive side. That's green. What color is the positive side?
Students Green.
Teacher The rod also has a negative side. That's red. What color is the negative side?
Students Red.
Teacher If this rod is our variable, then this flat represents the variable squared or $\boldsymbol{x}^{2}$. What does the flat represent?
Students The variable squared.
Teacher The flat has a positive side. That's blue. What color is the positive side?
Students Blue.
Teacher The flat also has a negative side. That's red. What color is the negative side?
Students Red.
Teacher Now, let's show an equation with the algebra tiles. Remember, we have pieces that represent the variable squared (show), the variable (show), and the constant (show). Look at this equation.
(Show problem.)

| Teacher <br> Students | Read the equation. <br> Teacher |
| :--- | :--- |
| Because we're going to show an equation, let's write an equal sign in the <br> middle of our manipulatives mat. <br> (Write equal sign.) <br> We'll show the left side of the equation on left side of the mat. We'll show <br> the right side of the equation on the right side of the mat. How do we use the <br> mat? <br> Show the left side of the equation on the left side. Show the right side of the |  |
| Teacher |  |
| equation on the right side. |  |
| Let's show the left side of the equation first. Look at the left side. First, do we |  |
| have any squared variables we need to show? |  |
| Yes/no. |  |

(Show tiles.)
Teacher Now, let's focus on the right side of the equation. First, do we have any squared variables we need to show?
Students Yes/no.

Teacher

Students
Teacher

Students
Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher

Students
Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher
Students
Teacher
Students
Teacher

Teacher

Students
Teacher
Students

We need to show a squared variable. Which of the algebra tiles will we use?
Flat.
Look to see if there's a coefficient with the squared variable. The coefficient tells us how many of the flats we will show. How many flats?
$\qquad$
And is the squared variable positive or negative?
$\qquad$
Let's show __ flats to show the squared variable.
(Show tiles.)
Now, do we have any variables we need to show?
Yes/no.
IF YES: We need to show a variable. Which of the algebra tiles will we use? Rod.
Look to see if there's a coefficient with the variable. The coefficient tells us how many of the rods we will show. How many rods?
-.
And is the variable positive or negative?
$\qquad$
Let's show __ rods to show the variable.
(Show tiles.)
Now, do we have any constants we need to show?
Yes/no.
IF YES: We need to show a constant. Which of the algebra tiles will we use? Unit.
How many units should we use? .
And is the constant positive or negative?
$\qquad$
Let's show __ units to show the constant.
(Show tiles.)
We used the algebra tiles to show this equation. What equation did we show?
$\qquad$
How can you use the algebra tiles to show equations?
Use the flats to show squared variables. Use the rods to show variables. Use the units to show the constant. Place the algebra tiles for the left side of an equation on the left side of an equal sign. Place the algebra tiles for the right side of an equation on the right side of an equal sign.

## Example

$$
2 x^{2}-3 x-7=x^{2}-3
$$

## EXAMPLE WITH MANIPULATIVES

Teacher Let's show different equations. What's an equation?
Students Two equal expressions with an equal sign.
Teacher An equation always has an equal sign. What's always in an equation?
Students An equal sign.
Teacher Let's represent different equations with these algebra tiles.
(Show manipulatives.)
Teacher With the algebra tiles, we'll interpret this unit to represent a constant. What's a constant?
Students A number or value that does not change.
Teacher Yes. A constant is a number or value that does not change.
Teacher We'll use this unit to show the constant. The unit has a positive side. That's brown. What color is the positive side?
Students Brown.
Teacher The unit also has a negative side. That's red. What color is the negative side?
Students Red.
Teacher With the algebra tiles, we'll interpret this rod to represent our variable. What will the rod represent?
Students A variable.
Teacher And the rod has a positive side. That's green. What color is the positive side?
Students Green.
Teacher The rod also has a negative side. That's red. What color is the negative side?
Students Red.
Teacher If this rod is our variable, then this flat represents the variable squared or $\boldsymbol{x}^{2}$. What does the flat represent?
Students The variable squared.
Teacher The flat has a positive side. That's blue. What color is the positive side?
Students Blue.
Teacher The flat also has a negative side. That's red. What color is the negative side?
Students Red.
Teacher Now, let's show an equation with the algebra tiles. Remember, we have pieces that represent the variable squared (show), the variable (show), and the constant (show). Look at this equation.
(Show problem.)
Teacher Read the equation.
Students $\quad 2 x^{2}-3 x-7=x^{2}-3$.
Teacher Because we're going to show an equation, let's write an equal sign in the middle of our manipulatives mat.
(Write equal sign.)

| Teacher | We'll show the left side of the equation on left side of the mat. We'll show the right side of the equation on the right side of the mat. How do we use the mat? |
| :---: | :---: |
| Students | Show the left side of the equation on the left side. Show the right side of the equation on the right side. |
| Teacher | Let's show the left side of the equation first. Look at the left side. First, do we have any squared variables we need to show? |
| Students | Yes. |
| Teacher | We need to show a squared variable. Which of the algebra tiles will we use? |
| Students | Flat. |
| Teacher | Look to see if there's a coefficient with the squared variable. The coefficient tells us how many of the flats we will show. How many flats? |
| Students | 2. |
| Teacher | And is the squared variable positive or negative? |
| Students | Positive. |
| Teacher | Let's show 2 blue flats to show the squared variable. (Show tiles.) |
| Teacher | Now, do we have any variables we need to show? |
| Students | Yes. |
| Teacher | We need to show a variable. Which of the algebra tiles will we use? |
| Students | Rod. |
| Teacher | Look to see if there's a coefficient with the variable. The coefficient tells us how many of the rods we will show. How many rods? |
| Students | 3. |
| Teacher | And is the variable positive or negative? |
| Students | Negative. |
| Teacher | Let's show 3 red rods to show the variable. (Show tiles.) |
| Teacher | Now, do we have any constants we need to show? |
| Students | Yes. |
| Teacher | We need to show a constant. Which of the algebra tiles will we use? |
| Students | Unit. |
| Teacher | How many units should we use? |
| Students | 7. |
| Teacher | And is the constant positive or negative? |
| Students | Negative. |
| Teacher | Let's show 7 red units to show the constant. (Show tiles.) |
| Teacher | Now, let's focus on the right side of the equation. First, do we have any squared variables we need to show? |
| Students | Yes. |
| Teacher | We need to show a squared variable. Which of the algebra tiles will we use? |
| Students | Flat. |


| Teacher | Look to see if there's a coefficient with the squared variable. The coefficient <br> tells us how many of the flats we will show. How many flats? |
| :--- | :--- |
| Students | 1. |

## D. Problems for Use During Instruction

See Module 22 Problem Sets.

## E. Vocabulary Cards for Use During Instruction

See Module 22 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

## Module 22:

## Representing Expressions and Equations

## Problem Sets

A. Order of operations (10)
B. Expressions with 1 coefficient and 1 variable (10)
C. Expressions with 2 like variables (10)
D. Expressions with 2 like variables and 1 constant (10)
E. Expressions with squared variables (10)

For equations, use Problem Sets from Module 23.
$15-(2 \times 5)$
$(8 \times 8) \div 6$
$[5+(9 \div 3)]+6$

## 7 <br> $\times(2 \div$ <br> 1) $\div 2$

##  $29-(2 \times 4)$

$(6+8-2)$
$(3+1) \times 4 \times 5$
$(4 \times 6) \div 6$
$(6-1+7)$
$8+[(9+4)-2]$

$$
4 x
$$

$3 r$
$11 W$
B.
$6 y$

## 53c

B.
$9 u$
$14 x$

$$
6 s
$$

$10 z$

## $0$ <br> 

## $4 y+5 y$

## c. <br> $6 r+8 r$

## C. <br> $2 s \times 5 s$

$11 x-5 x$
$12 d \div 3 d$
$2 f \times 9 f$

## C. <br> $15 v-6 v$

## C. <br> $2 m \times 8 m$

## C. <br> $15 x \div 5 x$

$5 x+4 x+1$

## D. <br> 

$9 b+6+8 b$
$9 w+7-3 w$

## D. <br> 

## D. <br> $5 t+4 t-10$

## D. <br> $3 m$ <br> $2+4 m$

$2 s^{2}+3 s-1$
$x^{2}+2 x+9$
$3 k^{2}+8 k+2$
$5 w^{2}-4 w-2$

## $8 a^{2}+$ <br>  <br> 7

$2 f^{2}+5 f+7$
$7 b^{2}+4 b+2$


## Module 22:

## Representing Expressions and Equations

base<br>coefficient<br>constant<br>equation<br>exponent<br>expression

## Vocabulary Cards

grouping
inequality
like terms
operator
term
variable

## base

A number that is multiplied by an exponent.

$$
\begin{gathered}
5^{3} \\
5 \text { is the base }
\end{gathered}
$$

## coefficient

A number that is multiplied by a variable.

$$
\begin{gathered}
5 x+9=\mathbf{2 4} \\
5 \text { is a coefficient }
\end{gathered}
$$

## constant

A term that does not change; a number on its own.

$$
\begin{gathered}
5 x+9=24 \\
9 \text { and } 24 \text { are constants }
\end{gathered}
$$

## equation

A mathematical statement that two expressions are the same or equal; must have an equal sign.

$$
\begin{gathered}
5 x+9=24 \\
5 x+9=24 \text { is an equation } \\
\text { (DOES have an = sign) }
\end{gathered}
$$

## exponent

The power to which a number is raised.
$5^{3}$
3 is the exponent

## expression

A combination of variables, numbers, and/or operations that represents a mathematical relationship; does not have an equal sign.

$$
\begin{gathered}
5 x+9 \\
5 x+9 \text { and } 24 \text { are expressions } \\
\text { (DOES NOT have an }=\text { sign) }
\end{gathered}
$$

## grouping

A combination of variables, numbers, and/or operations grouped together in parentheses or brackets.

$$
(15+4) \quad 2[(6+4) \div 2]
$$

## inequality

An algebraic relation showing that a quantity is greater or less than another quantity.

$$
5 x+9>24
$$

The $>$ makes this equation an inequality

## like terms

Terms that have the same variable or constant and can be combined.

$$
2 y \quad 4 y \quad 8 y
$$

## operator

A symbol (+,,$- \times \div$ ) that represents a mathematical operation.
$5 x+9=24$

+ is an operator


## term

A single number or a variable, or numbers and variables multiplied together.

$$
\begin{gathered}
5 x+9=24 \\
5 x, 9 \text {, and } 24 \text { are terms }
\end{gathered}
$$

## variable

A symbol for an unknown value, which is usually represented by a letter.

$$
\begin{aligned}
& 5 x+9=24 \\
& x \text { is a variable }
\end{aligned}
$$

