

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 23

Solving Equations

Module 23: Solving Equations Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
base	A number that is multiplied by an exponent.
coefficient	A number that is multiplied by a variable.
constant	A term that does not change; a number on its own.
equation	A mathematical statement that two expressions are the same or equal; must have an equal sign.
exponent	The power to which a number is raised.
expression	A combination of variables, numbers, and/or operations that represents a mathematical relationship; does not have an equal sign.
grouping	A combination of variables, numbers, and/or operations grouped together in parentheses or brackets.
inequality	An algebraic relation showing that a quantity is greater or less than another quantity.
like terms	Terms that have the same variable or constant and can be combined.
operator	A symbol (+,,$- \times, \div)$ that represents a mathematical operation.
term	A single number or a variable, or numbers or variables multiplied together.
variable	A symbol for an unknown value, which is usually represented by a letter.

B. Background Information

In this module, we focus on early algebraic concepts:
(1) Solving Single-Step Equations with One Variable
(2) Solving Multi-Step Equations with One Variable
(3) Solving Equations with Variables on Both Sides

C. Routines and Examples

(1) Solving Single-Step Equations with One Variable

Routine

Materials:

- Module 23 Problem Sets
- Module 23 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A manipulative like algebra tiles

ROUTINE WITH MANIPULATIVES
Teacher Let's solve an equation. What's an equation?
Students A mathematical statement with the equal sign.
Teacher An equation has numbers and operator symbols. An equation also has an equal sign. What's the symbol that's always in an equation?
Students The equal sign.
Teacher Let's show different equations and solve them. Let's use these algebra tiles. (Show manipulatives.)
Teacher With the algebra tiles, we'll interpret this unit to represent a constant. What's a constant?
Students A number or value that does not change.
Teacher Yes. A constant is a number or value that does not change.
Teacher We'll use this unit to show the constant. The unit has a positive side. That's brown. What color is the positive side?
Students Brown.
Teacher The unit also has a negative side. That's red. What color is the negative side? Students Red.
Teacher With the algebra tiles, we'll interpret this rod to represent our variable. What will the rod represent?
Students A variable.
Teacher And the rod has a positive side. That's green. What color is the positive side? Students Green.
Teacher The rod also has a negative side. That's red. What color is the negative side? Students Red.
Teacher If this rod is our variable, then this flat represents the variable squared or \boldsymbol{x}^{2}. What does the flat represent?
Students The variable squared.
Teacher This flat represents \boldsymbol{x}^{2} because we can multiply \boldsymbol{x} times \boldsymbol{x} (show multiplication) to create the area of x^{2}. Why does the flat represent x^{2} ?
Students Because the area created by multiplying x times x equals the area of x^{2}.

Teacher
Students
:---
Teacher
Blue.
The rod also has a negative side. That's red. What color is the negative side?

Red.

Teacher
Now, let's solve an equation with the algebra tiles. Remember, we have
pieces that represent the variable squared (show), the variable (show), and
the constant (show). Look at this equation.
(Show problem.)
Read the equation.

Teacher Let's also add/subtract __ from the left/right side of the equation. (Add or subtract with manipulatives.)
Teacher So, did we isolate the variable?
Students Yes.
Teacher What is equal to x ?
Students _.
Teacher
Great! x equals _. Let's say that together.
Students
Teacher
Students
Teacher
Students x equals \qquad
We used the algebra tiles to solve an equation. What equation did we solve?
\qquad .
How can you use the algebra tiles to solve equations?
Use the algebra tiles to set up the problem. Then, isolate the variable by removing the constant from the variable side. When removing the constant, whatever we do to one side of the equation we also have to do to the other side of the equation.

ROUTINE WITHOUT MANIPULATIVES

Teacher Let's solve an equation. What's an equation?
Students A mathematical statement with the equal sign.
Teacher An equation has numbers and operator symbols. An equation also has an equal sign. What's the symbol that's always in an equation?
Students The equal sign.
Teacher Let's show different equations and solve them. Let's use our paper and pencil. (Show pencil.)
Teacher Look at this equation. (Show problem.)
Teacher Read the equation.
Students __.
Teacher Let's solve this equation. We'll need to focus on the equal sign in this problem. So, let's draw a vertical line down from the equal sign to help us remember to balance both sides of the equation.
(Draw vertical line.)
Teacher We'll solve this equation by isolating the variable. What is the variable in this equation?
Students x.
Teacher $\quad x$ is the variable. We'll isolate the variable by removing the constant from the side of the equal sign with the variable. What's a constant?
Students A number that is on its own.
Teacher And in this problem, where is the variable?
Students Left side/right side.
Teacher I like to circle the variable to remember that l'm isolating the variable. Let's circle x.
Students (Circle x.)

Teacher So, we'll remove the constant from the left side/right side of the equation. What's the constant that we should remove?
Students __.
Teacher

Students
We will use the inverse operation and add/subtract __ from the left/right side of the equation. What's the inverse operation of the constant?

Teacher
Add/subtract.
Let's write plus/minus \qquad under the constant.
(Write.)
Teacher But, when solving equations, if we do something to one side of the equal sign, we have to do the same thing to the other side of the equal sign. What do we have to do when solving equations?
Students Do the same thing to both sides.
Teacher Let's also add/subtract _ from the left/right side of the equation. Let's write plus/minus _ under the constant on the other side of the equation. (Write.)
Teacher Let's do the math on the left side of the equation. What's \qquad plus/minus \qquad (on left side)?
Students \qquad
-
Let's write \qquad (Write.)
Teacher Let's do the math on the right side of the equation. What's \qquad plus/minus \qquad (on right side)?
Students
Teacher Let's write \qquad .
(Write.)
Teacher So, did we isolate the variable?
Students Yes.
Teacher What is equal to x ?
Students _.
Teacher Great! x equals __. Let's write that.
(Write.)
Teacher Let's read our answer.
Students
x equals \qquad _.
Teacher
Students
What equation did we solve?
Teacher
\qquad -
How can solve equations?
Students Isolate the variable by removing the constant from the variable side. When removing the constant, whatever we do to one side of the equation we also have to do to the other side of the equation.

Example	
$x-2=5$	
	EXAMPLE WITHOUT MANIPULATIVES
Teacher	Let's solve an equation. What's an equation?
Students	A mathematical statement with the equal sign.
Teacher	An equation has numbers and operator symbols. An equation also has an equal sign. What's the symbol that's always in an equation?
Students	The equal sign.
Teacher	Let's show different equations and solve them. Let's use our paper and pencil. (Show pencil.)
Teacher	Look at this equation. (Show problem.)
Teacher	Read the equation.
Students	$x-2=5$.
Teacher	Let's solve this equation. We'll need to focus on the equal sign in this problem. So, let's draw a vertical line down from the equal sign to help us remember to balance both sides of the equation. (Draw vertical line.)
Teacher	We'll solve this equation by isolating the variable. What is the variable in this equation?
Students	x.
Teacher	x is the variable. We'll isolate the variable by removing the constant from the side of the equal sign with the variable. What's a constant?
Students	A number that is on its own.
Teacher	And in this problem, where is the variable?
Students	Left side.
Teacher	I like to circle the variable to remember that I'm isolating the variable. Let's circle x.
Students	(Circle x.)
Teacher	So, we'll remove the constant from the left side of the equation. What's the constant that we should remove?
Students	-2.
Teacher	We will use the inverse operation and add or subtract from the left side of the equation. What's the operation of the constant?
Students	Subtract 2.
Teacher	What's the inverse operation of subtract 2?
Students	Add 2.
Teacher	Let's write plus 2 under the constant. (Write.)
Teacher	But, when solving equations, if we do something to one side of the equal sign, we have to do the same thing to the other side of the equal sign. What do we have to do when solving equations?

Students Do the same thing to both sides.
Teacher Let's also add $\mathbf{2}$ to the right side of the equation. Let's write plus $\mathbf{2}$ under the constant of 5 on the other side of the equation.
(Write.)
Teacher Let's do the math on the left side. What's - $\mathbf{2}$ plus 2?
Students 0.
Teacher Let's write 0.
(Write.)
Teacher Let's do the math on the right side. What's 5 plus 2?
Students 7.
Teacher Let's write 7.
(Write.)
Teacher So, did we isolate the variable?
Students Yes.
Teacher What is equal to \boldsymbol{x} ?
Students 7.
Teacher Great! x equals 7 . Let's write that.
(Write.)
Teacher Let's read our answer.
Students $\quad x$ equals 7.
Teacher What equation did we solve?
Students $\quad x-2=5$.
Teacher How can solve equations?
Students Isolate the variable by removing the constant from the variable side. When removing the constant, whatever we do to one side of the equation we also have to do to the other side of the equation.

(2) Solving Multi-Step Equations with One Variable

Routine

Materials:

- Module 23 Problem Sets
- Module 23 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

ROUTINE WITHOUT MANIPULATIVES

Teacher	Let's solve an equation. What's an equation?
Students	A mathematical statement with the equal sign.
Teacher	An equation has numbers and operator symbols. An equation also has an equal sign. What's the symbol that's always in an equation?
Students	The equal sign.
Teacher	Let's show different equations and solve them. Let's use our paper and pencil. (Show pencil.)
Teacher	Look at this equation. (Show problem.)
Teacher	Read the equation.
Students	
Teacher	Let's solve this equation. We'll need to focus on the equal sign in this problem. So, let's draw a vertical line down from the equal sign to help us remember to balance both sides of the equation. (Draw vertical line.)
Teacher	We'll solve this equation by isolating the variable. What is the variable in this equation?
Students	x.
Teacher	x is the variable. We'll isolate the variable by removing the constant from the side of the equal sign with the variable. Where is the variable?
Students	Left side/right side.
Teacher	I like to circle the variable to remember that I'm isolating the variable. Let's circle x.
Students	(Circle x.)
Teacher	So, we'll remove the constant from the left side/right side of the equation. What's the constant that we should remove?
Students	
Teacher	We will use the inverse operation and add/subtract \qquad from the left/right side of the equation. Let's write plus/minus \qquad under the constant. (Write.)
Teacher	But, when solving equations, if we do something to one side of the equal sign, we have to do the same thing to the other side of the equal sign. What do we have to do when solving equations?

Students Do the same thing to both sides.

Teacher

Teacher
Students
Teacher

Teacher
Students Teacher

Teacher
Students
Teacher
Students
Teacher

Students Teacher

Teacher

Students
Teacher

Teacher
Students
Teacher

Teacher
Students
Teacher

Teacher
Students
Teacher
Students
Teacher

Let's also add/subtract __ from the left/right side of the equation. Let's write plus/minus __ under the constant on the other side of the equation. (Write.)
Let's do the math. What's \qquad plus/minus \qquad (on left side)?
\qquad
Let's write \qquad
(Write.)
What's __ plus/minus __ (on right side)?
\qquad -.
Let's write \qquad .
(Write.)
So, did we isolate the variable?
No.
There's a coefficient with this variable. What's a coefficient?
A number multiplied by a variable.
To truly isolate the variable, we need to remove the coefficient. We'll remove the coefficient from the left side/right side of the equation. What's the coefficient that we should remove?
\qquad
-.
If the coefficient is multiplied by x, then we will use the inverse operation and divide \qquad from the left/right side of the equation. Let's write divide \qquad under the coefficient.
(Write.)
But, when solving equations, if we do something to one side of the equal sign, we have to do the same thing to the other side of the equal sign. What do we have to do when solving equations?
Do the same thing to both sides.
Let's also divide _ from the left/right side of the equation. Let's write divide __ under the constant on the other side of the equation.
(Write.)
Let's do the math. What's __ divided by _ (on left side)?
\qquad
Let's write \qquad .
(Write.)
What's __ divided by _ (on right side)?
\qquad
Let's write \qquad .
(Write.)
Now is the variable isolated?
Yes.
What is equal to x ?
_.
Great! x equals \qquad . Let's write that.
(Write.)

Teacher Let's read our answer.
Students x equals \qquad
Teacher What equation did we solve?
Students \qquad _.

Teacher

 How can you solve equations?Students Draw a line vertically down from the equal sign. Circle the variable. Then, isolate the variable by removing the constant. Divide the variable by a coefficient if necessary.

Example

$$
11=2 y+5
$$

EXAMPLE WITHOUT MANIPULATIVES

Teacher Let's solve an equation. What's an equation?
Students A mathematical statement with the equal sign.
Teacher An equation has numbers and operator symbols. An equation also has an equal sign. What's the symbol that's always in an equation?
Students The equal sign.
Teacher Let's show different equations and solve them. Let's use our paper and pencil. (Show pencil.)
Teacher Look at this equation.
(Show problem.)
Teacher Read the equation.
Students $11=2 y+5$.
Teacher Let's solve this equation. We'll need to focus on the equal sign in this problem. So, let's draw a vertical line down from the equal sign to help us remember to balance both sides of the equation.
(Draw vertical line.)
Teacher We'll solve this equation by isolating the variable. What is the variable in this equation?
Students y.
Teacher $\quad y$ is the variable. We'll isolate the variable by removing the constant from the side of the equal sign with the variable. Where is the variable?
Students Right side.
Teacher I like to circle the variable to remember that l'm isolating the variable. Let's circle y.
Students (Circle y.)
Teacher So, we'll remove the constant from the right side of the equation. What's the constant that we should remove?
Students 5.
\(\left.$$
\begin{array}{ll}\text { Teacher } & \begin{array}{l}\text { We will use the inverse operation and add or subtract from the right side of } \\
\text { the equation. What's the inverse operation with plus } 5 \text { ? }\end{array}
$$

Minus 5 .\end{array}\right]\)| Let's write minus 5 under the constant. |
| :--- |
| Teacher |
| (Write.) |
| But, when solving equations, if we do something to one side of the equal sign, |
| we have to do the same thing to the other side of the equal sign. What do we |
| have to do when solving equations? |

Students	1. Teacher Let's write 1. You could also not write the 1 because it's implied with the \boldsymbol{y}. (Write.)
Teacher	Now is the variable isolated?
Students	Yes.
Teacher	What is equal to \boldsymbol{y} ?
Students	3.

(3) Solving Equations with Variables on Both Sides

Routine

Materials:

- Module 23 Problem Sets
- Module 23 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

ROUTINE WITHOUT MANIPULATIVES
Teacher Let's solve an equation. What's an equation?
Students A mathematical statement with the equal sign.
Teacher An equation has numbers and operator symbols. An equation also has an equal sign. What's the symbol that's always in an equation?
Students The equal sign.
Teacher Let's show different equations and solve them. Let's use our paper and pencil. (Show pencil.)
Teacher Look at this equation. (Show problem.)
Teacher Read the equation.
Students -.
Teacher Let's solve this equation. We'll need to focus on the equal sign in this problem. So, let's draw a vertical line down from the equal sign to help us remember to balance the sides of an equation.
(Draw vertical line.)
Teacher We'll solve this equation by isolating the variable. What is the variable in this equation?
Students x.
Teacher $\quad x$ is the variable. We'll isolate the variable by removing the constant from the side of the equal sign with the variable. Where is the variable?
Students Left side and right side.
Teacher I like to circle the variable to remember that l'm isolating the variable. Let's circle x.
Students (Circle x.)
Teacher In this equation, x is on both sides. So, let's work with the x with the greater coefficient by removing the x with the coefficient that is less. Which x has a greater coefficient?
Students Left side/right side.
Teacher So, we'll remove the variable with the coefficient that is less from the left side/right side of the equation. Which coefficient and variable should we remove?
Students \qquad
Teacher We will use the inverse operation and add/subtract __ from the left/right side of the equation. Let's write plus/minus __ under the coefficient and variable.

	(Write.)
Teacher	But, when solving equations, if we do something to one side of the equal sign, we have to do the same thing to the other side of the equal sign. What do we have to do when solving equations?
Students	Do the same thing to both sides.
Teacher	Let's also add/subtract \qquad from the left/right side of the equation. Let's write plus/minus \qquad under the coefficient and variable on the other side of the equation. (Write.)
Teacher	Let's do the math. What's _ plus/minus _ ((on left side)?
Students	
Teacher	Let's write \qquad (Write.)
Teacher	What's _ plus/minus _ (on right side)?
Students	
Teacher	Let's write \qquad (Write.)
Teacher	We've removed one variable from one side of the equation. So, we'll remove the constant from the left side/right side of the equation. What's the constant that we should remove?
Students	-
Teacher	We will use the inverse operation and add/subtract \qquad from the left/right side of the equation. Let's write plus/minus \qquad under the constant. (Write.)
Teacher	But, when solving equations, if we do something to one side of the equal sign, we have to do the same thing to the other side of the equal sign. What do we have to do when solving equations?
Students	Do the same thing to both sides.
Teacher	Let's also add/subtract \qquad from the left/right side of the equation. Let's write plus/minus \qquad under the constant on the other side of the equation. (Write.)
Teacher	Let's do the math. What's _ plus/minus _ (on left side)?
Students	
Teacher	Let's write \qquad (Write.)
Teacher	What's _ plus/minus _ (on right side)?
Students	\ldots -
Teacher	Let's write \qquad (Write.)
Teacher	So, did we isolate the variable?
Students	No.
Teacher	There's a coefficient with this variable. To truly isolate the variable, we need to remove the coefficient.

Teacher	We'll remove the coefficient from the left side/right side of the equation. What's the coefficient that we should remove?
Students	
Teacher	If the coefficient is multiplied by x, then we will use the inverse operation and divide_from the left/right side of the equation. Let's write divide _ under the coefficient. (Write.) But, when solving equations, if we do something to one side of the equal sign, we have to do the same thing to the other side of the equal sign. What do we have to do when solving equations?
Teacher	

Example

$4 a-7=3 a-3$

EXAMPLE WITHOUT MANIPULATIVES

$\left.\begin{array}{ll}\text { Teacher } & \begin{array}{l}\text { Let's solve an equation. What's an equation? } \\ \text { Students }\end{array} \\ \text { Teacher mathematical statement with the equal sign. } \\ \text { An equation has numbers and operator symbols. An equation also has an } \\ \text { equal sign. What's the symbol that's always in an equation? }\end{array}\right]$

Teacher	Let's also subtract $3 a$ from the left side of the equation. Let's write minus $3 a$ under the coefficient and variable on the other side of the equation. (Write.)
Teacher	Let's do the math. What's $4 a$ minus $3 a$?
Students	a.
Teacher	Let's write a. (Write.)
Teacher	What's 3a minus 3a?
Students	0.
Teacher	Let's write 0 . We also could not write anything because we have none of the variable on the right side. (Write.)
Teacher	We've removed one variable from one side of the equation. So, we'll remove the constant from the left side of the equation. What's the constant that we should remove?
Students	-7.
Teacher	We will use the inverse operation and add 7 on the left side of the equation. Let's write plus 7 under the constant. (Write.)
Teacher	But, when solving equations, if we do something to one side of the equal sign, we have to do the same thing to the other side of the equal sign. What do we have to do when solving equations?
Students	Do the same thing to both sides.
Teacher	Let's also add 7 on the right side of the equation. Let's write plus 7 under the constant on the other side of the equation. (Write.)
Teacher	Let's do the math on the left side. What's -7 plus 7?
Students	0.
Teacher	Let's write 0 . We also don't have to write anything if it's 0 . (Write.)
Teacher	Let's do the math on the right side. What's -3 plus 7?
Students	4.
Teacher	Let's write 4. (Write.)
Teacher	So, did we isolate the variable?
Students	Yes.
Teacher	What is equal to a ?
Students	4.
Teacher	Great! a equals 4. Let's write that. (Write.)
Teacher	Let's read our answer.
Students	a equals 4.
Teacher	What equation did we solve?
Students	$4 a-7=3 a-3$.

Teacher How can you solve this equation?

Students Draw a vertical line down from the equal sign. Remove the coefficient and variable of lesser value to the other side of the equal sign. Remove the constant to isolate the variable. Divide by the coefficient.

D. Problems for Use During Instruction

See Module 23 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 23 Vocabulary Cards.

Developed by:
Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 23: Solving Equations

Problem Sets

A. Equations with 1 coefficient, 1 variable, and 1 constant (10)
B. Equations with 2 constants and 1 variable; add/subtract (10)
C. Equations with 2 constants and 1 variable; multiply/divide (10)
D. Equations with 1 coefficient, 2 constants, and 1 variable (10)
E. Equations with 2 like variables (10)
F. Equations with exponents (10)

$4 a=12$

B.
 $9 x=36$

B.

B.

B.

B.
 $32=4 t$

$76=49$

B.

B.
 $25=5 g$

B.

B.
 $2-K=5$

B.
 $9+r=9$

∞
 $5+f=8$

B.

∞
 $7=$
 11 M

B.
 $c+4=6$

B.
 Y +
 $4=$
 12

B.
 $8-p=15$

ن
 $2=M \div 6$

$8=z \div 4$

ن

$5=R \times 1$

$c \times 6=24$

$6 \times 9=36$

$$
4=h \div 4
$$

D. $30=2 n \times 3$

D.
 $27-1$ 3 57

D.
 $5 a-2=13$

D.
 $64-5 x=14$

D.

\circ 76

47

D.

D.
 $3 c+$

$2 y+5=15-3 y$
$2 x+20=x+56$
$3 k+2=50-k$
$4+p=3 p+18$
$3 x+12=72+8 x$
$5 x+10=x-14$
$6-2 f=7 f+1$
$b+2=7 b+20$

$48-5 e=3 e+8$

$4 e-7=3 a-3$
$x^{2}+13 x-7=15$
$7 x^{2}+17 x+10=0$
$18 r^{2}+61 r=50$
$k^{2}+9 k-5=5$
$h^{2}-7 h=0$
$y^{2}+5=8$
$20 z^{2}-48 z=6$
$6 x^{2}+17 x-88=0$
$g^{2}+18 g+1=72$
$n^{2}+5=11$

Module 23: Solving Equations

Vocabulary Cards

base
coefficient
constant
equation
exponent
expression

grouping
inequality
like terms
operator
term
variable

base

A number that is multiplied by an exponent.

$$
\begin{gathered}
5^{3} \\
5 \text { is the base }
\end{gathered}
$$

coefficient

A number that is multiplied by a variable.

$$
\begin{gathered}
5 x+9=\mathbf{2 4} \\
5 \text { is a coefficient }
\end{gathered}
$$

constant

A term that does not change; a number on its own.

$$
\begin{gathered}
5 x+9=24 \\
9 \text { and } 24 \text { are constants }
\end{gathered}
$$

equation

A mathematical statement that two expressions are the same or equal; must have an equal sign.

$$
\begin{gathered}
5 x+9=24 \\
5 x+9=24 \text { is an equation } \\
\text { (DOES have an = sign) }
\end{gathered}
$$

exponent

The power to which a number is raised.
5^{3}
3 is the exponent

expression

A combination of variables, numbers, and/or operations that represents a mathematical relationship; does not have an equal sign.

$$
\begin{gathered}
5 x+9 \\
5 x+9 \text { and } 24 \text { are expressions } \\
\text { (DOES NOT have an }=\text { sign) }
\end{gathered}
$$

grouping

A combination of variables, numbers, and/or operations grouped together in parentheses or brackets.

$$
(15+4) \quad 2[(6+4) \div 2]
$$

inequality

An algebraic relation showing that a quantity is greater or less than another quantity.

$$
5 x+9>24
$$

The $>$ makes this equation an inequality

like terms

Terms that have the same variable or constant and can be combined.

$$
2 y \quad 4 y \quad 8 y
$$

operator

A symbol (+,,$- \times \div$) that represents a mathematical operation.
$5 x+9=24$

+ is an operator

term

A single number or a variable, or numbers and variables multiplied together.

$$
\begin{gathered}
5 x+9=24 \\
5 x, 9 \text {, and } 24 \text { are terms }
\end{gathered}
$$

variable

A symbol for an unknown value, which is usually represented by a letter.

$$
\begin{aligned}
& 5 x+9=24 \\
& x \text { is a variable }
\end{aligned}
$$

